COUNTRIES FOR OLD MEN: AN ANALYSIS OF THE AGE WAGE GAP

Nicola Bianchi (Kellogg and NBER)

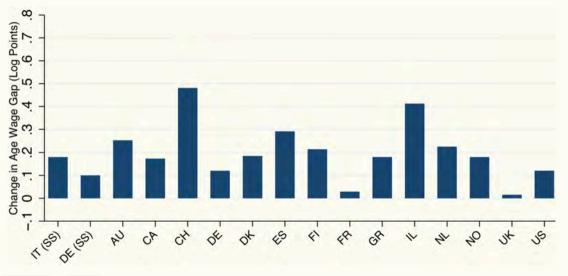
Matteo Paradisi (EIEF)

CIFREL Seminar - Università Cattolica

Workforce Aging and the Age Wage Gap

- ► Average workforce age increased in high-income countries
 - E.g.: share of 055 workers in US almost doubled in 1985-2020

1


Workforce Aging and the Age Wage Gap

- Average workforce age increased in high-income countries
 - E.g.: share of 055 workers in US almost doubled in 1985-2020
- Not the first recent big demographic change
 - 1960s entry of "baby-boom" cohort, drop in average worker age
- Baby-boomers associated with increase in 055-U35 wage gap (Freeman, 1979)
 - Explanation: substitutability + increased supply of younger workers

Workforce Aging and the Age Wage Gap

- Average workforce age increased in high-income countries
 - E.g.: share of 055 workers in US almost doubled in 1985-2020
- Not the first recent big demographic change
 - 1960s entry of "baby-boom" cohort, drop in average worker age
- Baby-boomers associated with increase in O55-U35 wage gap (Freeman, 1979)
 - Explanation: substitutability + increased supply of younger workers
- Has current workforce aging narrowed age wage gap?

Wage Gap Between Older and Younger Workers Increased

- ▶ Data from 19 high-income countries
 - Italy: 313 mil obs., 29 mil workers, 3.5 mil firms
 - Germany: 35 mil obs., 9 mil workers, 128k firms
 - LIS Database: 6.9 mil. workers from 19 countries

- Data from 19 high-income countries
 - Italy: 313 mil obs., 29 mil workers, 3.5 mil firms
 - Germany: 35 mil obs., 9 mil workers, 128k firms
 - LIS Database: 6.9 mil. workers from 19 countries
- Why is there an increase in age wage gap despite larger supply of older workers?
 - negative career spillovers in firms: success of older might come at cost for younger
 - spillovers increase if more older workers with lower turnover and/or if slowdown in growth
 - congestion will deteriorate perspectives of younger workers

- Data from 19 high-income countries
 - Italy: 313 mil obs., 29 mil workers, 3.5 mil firms
 - Germany: 35 mil obs., 9 mil workers, 128k firms
 - LIS Database: 6.9 mil. workers from 19 countries
- Why is there an increase in age wage gap despite larger supply of older workers?
 - negative career spillovers in firms: success of older might come at cost for younger
 - spillovers increase if more older workers with lower turnover and/or if slowdown in growth
 - congestion will deteriorate perspectives of younger workers
- ► Find evidence in support of negative career spillovers story
 - Look for evidence of deterioration of younger workers' careers
 - Investigate within firm dynamics and crowd out from higer-paying firms
 - Test if gap increases more in more constrained firms

- Data from 19 high-income countries
 - Italy: 313 mil obs., 29 mil workers, 3.5 mil firms
 - Germany: 35 mil obs., 9 mil workers, 128k firms
 - LIS Database: 6.9 mil. workers from 19 countries
- Why is there an increase in age wage gap despite larger supply of older workers?
 - negative career spillovers in firms: success of older might come at cost for younger
 - spillovers increase if more older workers with lower turnover and/or if slowdown in growth
 - congestion will deteriorate perspectives of younger workers
- ► Find evidence in support of negative career spillovers story
 - Look for evidence of deterioration of younger workers' careers
 - Investigate within firm dynamics and crowd out from higer-paying firms
 - Test if gap increases more in more constrained firms
- ► Complement with additional evidence to rule out several alternative stories

- 1. Deterioration of younger workers' careers: pushed to bottom of wage distribution
 - Many 055 workers swapped positions with U35 workers in wage distribution
 - E.g., share of total increase explained by change in rank is 78% in Italy and 98% in US

- 1. Deterioration of younger workers' careers: pushed to bottom of wage distribution
 - Many 055 workers swapped positions with U35 workers in wage distribution
 - E.g., share of total increase explained by change in rank is 78% in Italy and 98% in US
- 2. Younger workers lose rank both at entry and over life-cycle

- 1. Deterioration of younger workers' careers: pushed to bottom of wage distribution
 - Many 055 workers swapped positions with U35 workers in wage distribution
 - E.g., share of total increase explained by change in rank is 78% in Italy and 98% in US
- 2. Younger workers lose rank both at entry and over life-cycle
- 3. Within firm dynamics are important:
 - across all levels of firm average pay, U35 lose positions within firms, while 055 gain
 - opposite vertical movements of two age groups across job levels

- 1. Deterioration of younger workers' careers: pushed to bottom of wage distribution
 - Many 055 workers swapped positions with U35 workers in wage distribution
 - E.g., share of total increase explained by change in rank is 78% in Italy and 98% in US
- 2. Younger workers lose rank both at entry and over life-cycle
- 3. Within firm dynamics are important:
 - across all levels of firm average pay, U35 lose positions within firms, while 055 gain
 - opposite vertical movements of two age groups across job levels
- 4. Younger workers crowded out of higer-paying firms
 - older workers manage to increase tenure in longer-living high-paying firms

- 1. Deterioration of younger workers' careers: pushed to bottom of wage distribution
 - Many 055 workers swapped positions with U35 workers in wage distribution
 - E.g., share of total increase explained by change in rank is 78% in Italy and 98% in US
- 2. Younger workers lose rank both at entry and over life-cycle
- 3. Within firm dynamics are important:
 - across all levels of firm average pay, U35 lose positions within firms, while 055 gain
 - opposite vertical movements of two age groups across job levels
- 4. Younger workers crowded out of higer-paying firms
 - older workers manage to increase tenure in longer-living high-paying firms
- 5. Bigger age wage gap increase in more constrained firms
 - e.g. low-growth, older, larger: less room for creating new positions at the top

- 1. Deterioration of younger workers' careers: pushed to bottom of wage distribution
 - Many 055 workers swapped positions with U35 workers in wage distribution
 - E.g., share of total increase explained by change in rank is 78% in Italy and 98% in US
- 2. Younger workers lose rank both at entry and over life-cycle
- 3. Within firm dynamics are important:
 - across all levels of firm average pay, U35 lose positions within firms, while O55 gain
 - opposite vertical movements of two age groups across job levels
- 4. Younger workers crowded out of higer-paying firms
 - older workers manage to increase tenure in longer-living high-paying firms
- 5. Bigger age wage gap increase in more constrained firms
 - e.g. low-growth, older, larger: less room for creating new positions at the top
- 6. Complement with additional evidence to rule out alternative stories
 - among others: workforce composition, inequality trend, education and returns to experience

Literature Review

1. Wage trends

- Relatively small literature on age wage gap (Rosolia & Torrini (2007); Naticchioni et al. (2014))
 - Administrative and survey data from multiple countries
 - More tests and improved external validity
 - Implications of our results on pay and employment gap for income: Guaitoli and Pancrazi (2022)
 - Worsening in life-time earnings of younger workers (Guvenen et al., 2022)

Literature Review

1. Wage trends

- Relatively small literature on age wage gap (Rosolia & Torrini (2007); Naticchioni et al. (2014))
 - Administrative and survey data from multiple countries
 - More tests and improved external validity
 - Implications of our results on pay and employment gap for income: Guaitoli and Pancrazi (2022)
 - Worsening in life-time earnings of younger workers (Guvenen et al., 2022)
- Bridge gap with other strands of the labor literature
 - Wage inequality (Autor et al. (2008); Card et al. (2013); Song et al. (2019)), increases in returns to experience (Jones (2009); Azoulay et al. (2020); Jeong et al. (2015)); SBTC (Acemoglu et al. (2011); Autor et al. (2006)); domestic outsourcing (Goldschmidt & Schmieder (2017)); demand for skills (Deming (2021)); selection

Literature Review

1. Wage trends

- Relatively small literature on age wage gap (Rosolia & Torrini (2007); Naticchioni et al. (2014))
 - Administrative and survey data from multiple countries
 - More tests and improved external validity
 - Implications of our results on pay and employment gap for income: Guaitoli and Pancrazi (2022)
 - Worsening in life-time earnings of younger workers (Guvenen et al., 2022)
- Bridge gap with other strands of the labor literature
 - Wage inequality (Autor et al. (2008); Card et al. (2013); Song et al. (2019)), increases in returns to experience (Jones (2009); Azoulay et al. (2020); Jeong et al. (2015)); SBTC (Acemoglu et al. (2011); Autor et al. (2006)); domestic outsourcing (Goldschmidt & Schmieder (2017)); demand for skills (Deming (2021)); selection

2. Spillovers across workers

- Bertoni & Brunello (2020), Boeri et al. (2021), Bianchi et al. (2022), and Mohnen (2022) find that increase in retirement age worsens labor-market outcomes of younger workers
- Widening of age wage gap compatible with main takeaway of these papers

Outline

Data

Deterioration in Younger Workers Careers, Improvement for Older Workers Importance of Changes in Relative Rank in Wage Distribution Entry Rank Vs. Rank Growth

The Role of Firms

Rank Increase Between Vs. Within Firms Age Gap Trend Heterogeneity Across Types of Firms

Alternative Stories

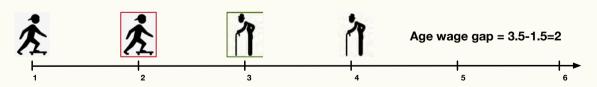
Conclusions

- ► Italy: Social Security Institute (INPS) VisitINPS Program
 - universe of private sector employees, 1985-2019
 - can track all individuals and firms
 - weekly wage and yearly labor earnings, key demographics, contract info

- ► Italy: Social Security Institute (INPS) VisitINPS Program
 - universe of private sector employees, 1985-2019
 - · can track all individuals and firms
 - weekly wage and yearly labor earnings, key demographics, contract info
- Germany: FDZ-IAB
 - sample of establishments, 1996-2017
 - can track individuals over time, but no full career
 - daily wages, key demographics, contract info

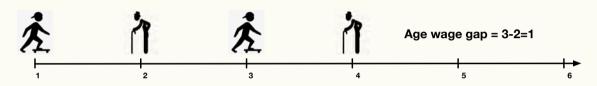

- ► Italy: Social Security Institute (INPS) VisitINPS Program
 - universe of private sector employees, 1985-2019
 - · can track all individuals and firms
 - weekly wage and yearly labor earnings, key demographics, contract info
- Germany: FDZ-IAB
 - sample of establishments, 1996-2017
 - can track individuals over time, but no full career
 - daily wages, key demographics, contract info
- Other 19 Countries: Luxembourg Income Study (LIS)
 - samples of workforce, varying years
 - cannot match to firms
 - yearly labor earnings, more demographics

- ► Italy: Social Security Institute (INPS) VisitINPS Program
 - universe of private sector employees, 1985-2019
 - can track all individuals and firms
 - weekly wage and yearly labor earnings, key demographics, contract info
- ► Germany: FDZ-IAB
 - sample of establishments, 1996-2017
 - can track individuals over time, but no full career
 - daily wages, key demographics, contract info
- ► Other 19 Countries: Luxembourg Income Study (LIS)
 - samples of workforce, varying years
 - cannot match to firms
 - yearly labor earnings, more demographics
- Use ITA as main setting, replicate for others when possible


Rank Gap Vs. Distributional Gap

Two Types of Increases in the Age Wage Gap

► Wage distribution at baseline:



► Age wage gap can increase through a change in wage rank:

Two Types of Increases in the Age Wage Gap

► Wage distribution at baseline:

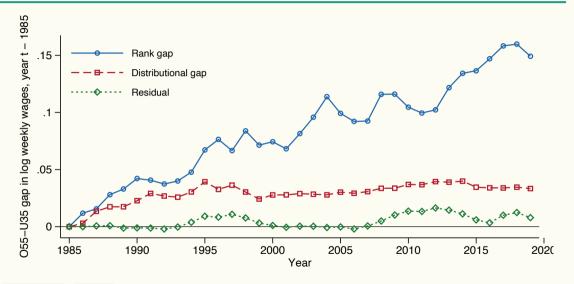
► Age wage gap can increase through a change in mean wages at different percentiles:

Decomposition: Rank Gap and Distributional Gap

The change in mean wages for age group a between periods t and t^\prime can be written as follows:

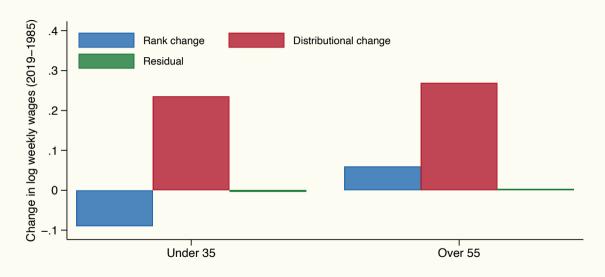
$$\Delta \mathbf{w_{a}^{t,t'}} = \underbrace{\sum_{\mathbf{v}} \mathbf{s_{a,v,t}} \left(\bar{\mathbf{w}}_{\mathbf{v},t'} - \bar{\mathbf{w}}_{\mathbf{v},t} \right)}_{\text{Distributional gap}} +$$

- ightharpoonup s_{a,v,t} = share of workers in age group a $\in \{U35, 055\}$, vigintile v of the distribution of wages, and year t
- ightharpoonup $\bar{w}_{v,t}$ = mean log wage in vigintile v and year t

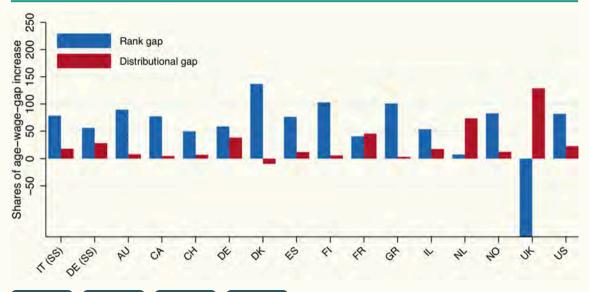

Decomposition: Rank Gap and Distributional Gap

The change in mean wages for age group a between periods t and t^\prime can be written as follows:

$$\Delta \mathbf{w}_{\mathbf{a}}^{t,t'} = \underbrace{\sum_{\mathbf{v}} \mathbf{s}_{\mathbf{a},\mathbf{v},t} \left(\bar{\mathbf{w}}_{\mathbf{v},t'} - \bar{\mathbf{w}}_{\mathbf{v},t} \right)}_{\text{Distributional gap}} + \underbrace{\sum_{\mathbf{v}} \left(\mathbf{s}_{\mathbf{a},\mathbf{v},t'} - \mathbf{s}_{\mathbf{a},\mathbf{v},t} \right) \cdot \bar{\mathbf{w}}_{\mathbf{v},t}}_{\text{Rank gap}} + \underbrace{\varepsilon_{\mathbf{a}}^{t,t'}}_{\text{Residual}}$$


- ightharpoonup s_{a,v,t} = share of workers in age group a $\in \{U35, 055\}$, vigintile v of the distribution of wages, and year t
- ightharpoonup $\bar{w}_{v,t}$ = mean log wage in vigintile v and year t
- \blacktriangleright Take difference between two age groups a $\in \{ \text{U35}, \text{O55} \}$ to decompose change in age wage gap

Most of the Increase in Age Wage Gap from Larger Rank Gap



Decomposition by Age Group: U35 lose, while 055 gain

Rank Gap More Important in Most Countries

Decomposition of wage-rank loss for U35 workers between period t and t'

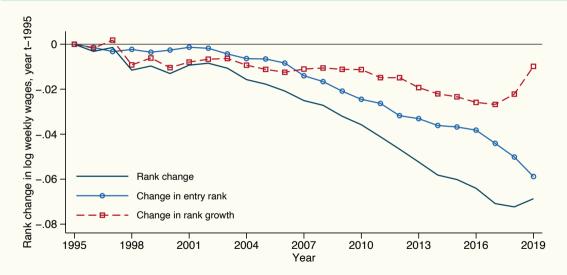
- Decomposition of wage-rank loss for U35 workers between period t and t'
- Change in rank at labor-market entry between t and t' (e is years from entry)

$$\underbrace{\sum_{e \in [0,18]} \mathbf{s}_{e,t} \cdot \sum_{v} \left[\left(\mathbf{s}_{e,t',v}^{\mathsf{E}} - \mathbf{s}_{e,t,v}^{\mathsf{E}} \right) \cdot \bar{\mathbf{w}}_{v,t} \right]}_{\text{Change in entry rank}}$$

- s^E_{e,t,v} = the share of workers who are e years from entry in year t in vigintile v at the time of entry in the labor market (E)
- s_{e,t} = the share of workers who are e years from entry in year t out of all U-35

- Decomposition of wage-rank loss for U35 workers between period t and t'
- ► Change in rank at labor-market entry between t and t' (e is years from entry)

$$\underbrace{\sum_{e \in [0,18]} \mathbf{s}_{e,t} \cdot \sum_{v} \left[\left(\mathbf{s}_{e,t',v}^{\mathsf{E}} - \mathbf{s}_{e,t,v}^{\mathsf{E}} \right) \cdot \bar{\mathbf{w}}_{v,t} \right]}_{\text{Change in entry rank}}$$


- s^E_{e,t,v} = the share of workers who are e years from entry in year t in vigintile v at the time of entry in the labor market (E)
- $s_{e,t}$ = the share of workers who are e years from entry in year t out of all U-35
- Change in post-entry rank growth between t and t'

$$\underbrace{\sum_{e \in [0,18]} \mathbf{s}_{e,t} \cdot \sum_{v} \left[\left(\Delta \mathbf{s}_{e,t',v}^{t'-E} - \Delta \mathbf{s}_{e,t,v}^{t-E} \right) \cdot \bar{\mathbf{w}}_{v,t} \right]}_{\text{Change in rank growth}}$$

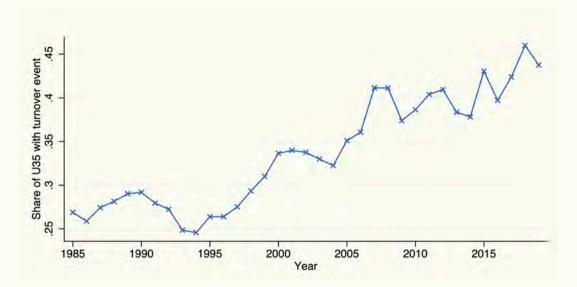
onange in raint growt

• $\Delta s_{e,t',v}^{t'-E} = s_{e,t,v} - s_{e,t,v}^{E} = \text{change in share at vingtile v of those who are e years from entry in t}$

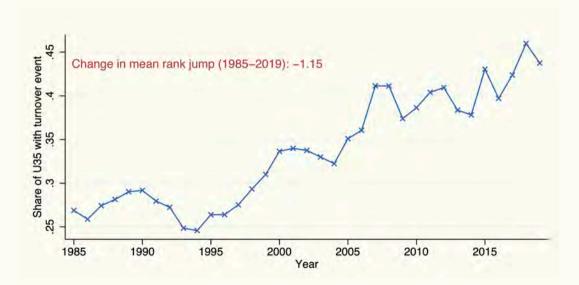
U35: Loss From Both Entry and Post-Entry Growth

Takeaways From Entry Vs. Post-Entry Growth

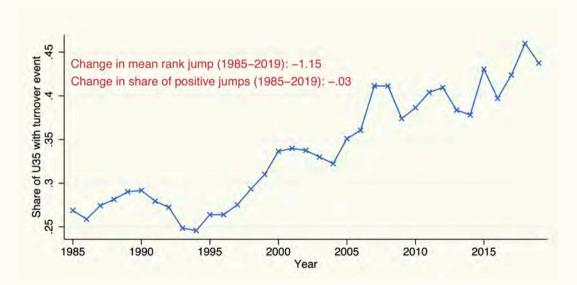
▶ Deterioration of U35 rank from lower entry rank AND lower rank growth over lifecycle


Takeaways From Entry Vs. Post-Entry Growth

- Deterioration of U35 rank from lower entry rank AND lower rank growth over lifecycle
- Career spillovers compatible with lower intercept and shallower slope:
 - Worse initial conditions due to more higher-ranked jobs occupied by older workers
 - By same token, slower wage growth and fewer promotions


Takeaways From Entry Vs. Post-Entry Growth

- Deterioration of U35 rank from lower entry rank AND lower rank growth over lifecycle
- Career spillovers compatible with lower intercept and shallower slope:
 - Worse initial conditions due to more higher-ranked jobs occupied by older workers
 - By same token, slower wage growth and fewer promotions
- How does lower growth relate to turnover and firm-to-firm moves?
 - we know that most of wage growth comes from turnover


Despite Larger Turnover, Average Rank Growth In Turnover Declines

Despite Larger Turnover, Average Rank Growth In Turnover Declines

Despite Larger Turnover, Average Rank Growth In Turnover Declines

The Importance of Within and Between

Firm Dynamics

Sorting of Workers

- Younger people lose and older gain
 - Is it because young workers are more likely to end up in low paying firms?
 - OR, do they grow less within equally paying firms?

Sorting of Workers

- Younger people lose and older gain
 - Is it because young workers are more likely to end up in low paying firms?
 - OR, do they grow less within equally paying firms?
- ▶ In every year, divide workers into 50,000 firm-worker groups (Machado & Mata (2005)):
 - 100 firm groups (f) depending on average firm wage
 - 500 worker groups (e) within each firm group

Sorting of Workers

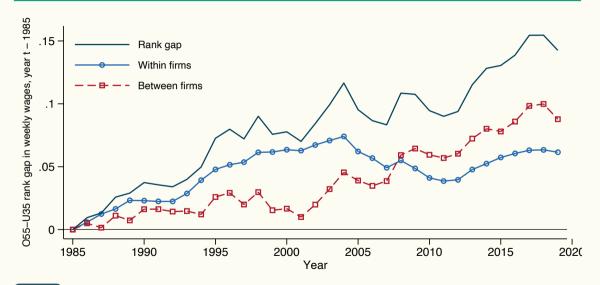
- Younger people lose and older gain
 - Is it because young workers are more likely to end up in low paying firms?
 - OR, do they grow less within equally paying firms?
- ▶ In every year, divide workers into 50,000 firm-worker groups (Machado & Mata (2005)):
 - 100 firm groups (f) depending on average firm wage
 - 500 worker groups (e) within each firm group
- \blacktriangleright Write shares of workers in age group a, firm-worker group (f, e), and year t as follows:

$$\mathbf{s}_{\mathsf{a},(\mathsf{f},\mathsf{e}),\mathsf{t}} = \underbrace{\mathbf{s}_{\mathsf{a},\mathsf{f},\mathsf{t}}}_{\mathsf{Share of a in f}} \cdot \underbrace{\mathbf{s}_{\mathsf{a},(\mathsf{e}|\mathsf{f}),\mathsf{t}}}_{\mathsf{Share of a in e conditional on f}}$$

Rank Gap: Between Vs. Within Firms

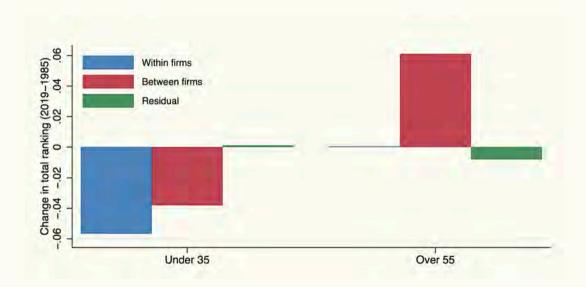
The change in the rank gap for age group $a \in \{U35, 055\}$ can be written as follows:

$$\underbrace{\sum_{\textbf{V}} \left(\textbf{S}_{\textbf{a},\textbf{V},\textbf{t}'} - \textbf{S}_{\textbf{a},\textbf{V},\textbf{t}}\right) \bar{\textbf{W}}_{\textbf{V},\textbf{t}}}_{\text{Rank gap}} = \underbrace{\sum_{\textbf{g} \in (\textbf{f},\textbf{e})} \left(\textbf{S}_{\textbf{a},\textbf{f},\textbf{t}'} - \textbf{S}_{\textbf{a},\textbf{f},\textbf{t}}\right) \cdot \textbf{S}_{\textbf{a},(\textbf{e}|\textbf{f}),\textbf{t}} \cdot \bar{\textbf{W}}_{\textbf{g},\textbf{t}}}_{\text{Between firms}} +$$

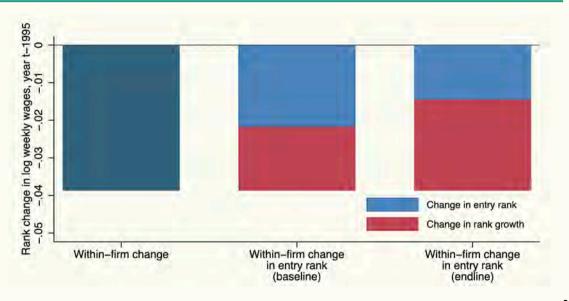

Rank Gap: Between Vs. Within Firms

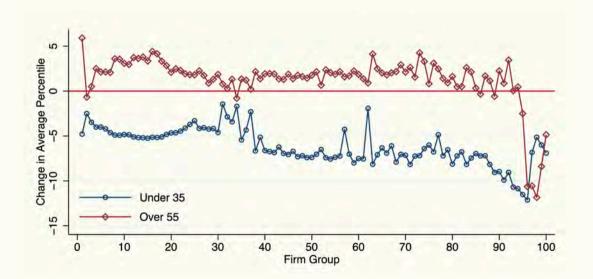
The change in the rank gap for age group a $\in \{ \text{U35}, \text{O55} \}$ can be written as follows:

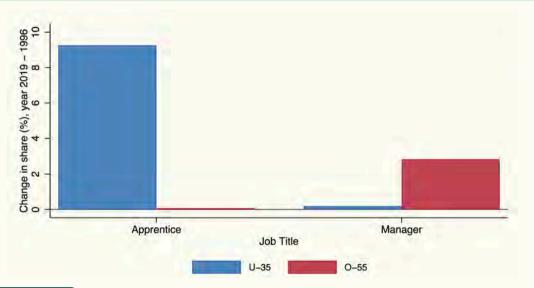
$$\underbrace{\sum_{\textbf{V}} \left(\textbf{S}_{\textbf{a},\textbf{V},\textbf{t}'} - \textbf{S}_{\textbf{a},\textbf{V},\textbf{t}}\right) \bar{\textbf{W}}_{\textbf{V},\textbf{t}}}_{\text{Rank gap}} = \underbrace{\sum_{\textbf{g} \in (\textbf{f},\textbf{e})} \left(\textbf{S}_{\textbf{a},\textbf{f},\textbf{t}'} - \textbf{S}_{\textbf{a},\textbf{f},\textbf{t}}\right) \cdot \textbf{S}_{\textbf{a},(\textbf{e}|\textbf{f}),\textbf{t}} \cdot \bar{\textbf{W}}_{\textbf{g},\textbf{t}}}_{\text{Between firms}} + \underbrace{\sum_{\textbf{g} \in (\textbf{f},\textbf{e})} \textbf{S}_{\textbf{a},\textbf{f},\textbf{t}} \cdot \left(\textbf{S}_{\textbf{a},(\textbf{e}|\textbf{f}),\textbf{t}'} - \textbf{S}_{\textbf{a},(\textbf{e}|\textbf{f}),\textbf{t}}\right) \cdot \bar{\textbf{W}}_{\textbf{g},\textbf{t}} + \underbrace{\varepsilon_{\textbf{a}}^{\textbf{t},\textbf{t}'}}_{\text{Residual}}}_{\text{Within firms}}$$


You can further differentiate between two age groups a ∈ {U35, 055}

Within-Firm Component Accounts for 61% of Rank-Gap Increase




Within Firm Dynamics are Mostly Important for U35

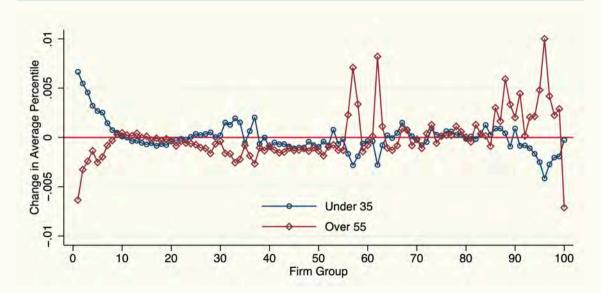

U35 Lose Rank Within Firms At Entry, and for Lower Growth

U35 Lose Rank Within Any Level of Firm Pay, 055 Gain

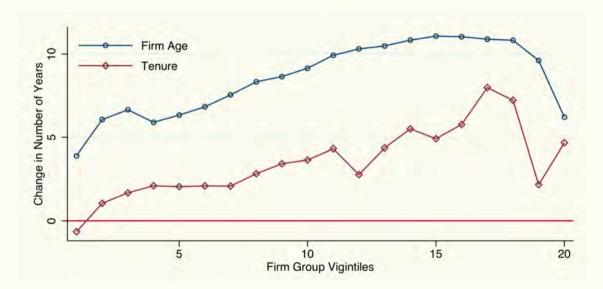
U-35 Move to Apprenticeship, O-55 to Managerial Jobs

U35 Find it Harder to Grow Within Firms

- ▶ Within-firm loss is the main source of U35 career deterioration
- ► U35 lose rank in any firm group
- ▶ U35 enter in lower-ranked position and progress less within their firm
- ► U35 move vertically towards lower job titles
 - apprenticeship contracts are permanent so it is not about job flexibility


U35 Find it Harder to Grow Within Firms

- Within-firm loss is the main source of U35 career deterioration
- ► U35 lose rank in any firm group
- ▶ U35 enter in lower-ranked position and progress less within their firm
- ► U35 move vertically towards lower job titles
 - apprenticeship contracts are permanent so it is not about job flexibility
- ► This evidence is fully consistent with a career spillover story


U35 Find it Harder to Grow Within Firms

- Within-firm loss is the main source of U35 career deterioration
- ► U35 lose rank in any firm group
- ▶ U35 enter in lower-ranked position and progress less within their firm
- ▶ U35 move vertically towards lower job titles
 - apprenticeship contracts are permanent so it is not about job flexibility
- ▶ This evidence is fully consistent with a career spillover story
- What about between firm dynamics?

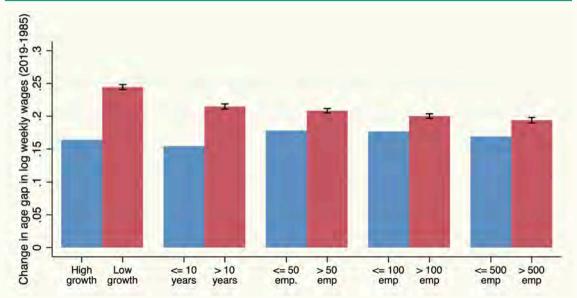
U35 Crowded Out of High-Paying Firms, 055 Concentrate In Those

Firm Aging Has Favored Permanence of 055 in High-Paying Firms

U35 Seem to Have Been Crowded Out of High-Paying Firms

- ► U35 progressively concentrated in low-paying firms
 - 055 move in the opposite direction and concentrate at the top
 - 055 did not move in older age, but have been in top-paying firms for long (avg tenure: 15yrs)

U35 Seem to Have Been Crowded Out of High-Paying Firms


- ▶ U35 progressively concentrated in low-paying firms
 - 055 move in the opposite direction and concentrate at the top
 - 055 did not move in older age, but have been in top-paying firms for long (avg tenure: 15yrs)
- Top paying firms have aged more than others
- O55 exploit longer firm life to increase tenure

U35 Seem to Have Been Crowded Out of High-Paying Firms

- ▶ U35 progressively concentrated in low-paying firms
 - 055 move in the opposite direction and concentrate at the top
 - 055 did not move in older age, but have been in top-paying firms for long (avg tenure: 15yrs)
- Top paying firms have aged more than others
- 055 exploit longer firm life to increase tenure
- Opportunities in top firms are taken, U35 forced to move towards the bottom
 - consistent with career spillovers playing out labor-maket-wise

Firm Heterogeneity

Larger Effects Within Older, Larger, Slow-Growing Firms

Takeaways From Firm Heterogeneities

- Career spillovers are compatible with firm heterogeneities
 - Key: some firms need to face constraints in adding higher-ranked jobs
 - These firms are more likely to be in mature stage of their life cycle
 - Consistent with prior empirical and theoretical findings (Bennett & Levinthal (2017); Bianchi et al. (2022)
 - These firms are becoming more common ► Firm Age + Lower GDP growth in most high-income countries ► GDP

- ► Outsourcing: U35 might lose because outsourced to lower-paying sectors Evidence
 - most of age gap increase happens within sector

- - most of age gap increase happens within sector
- ► Higher demand for decision-making intense occupations ► Evidence
 - all age gap increase occurs within occupation
 - inconsistent with over time increase we observe for wage rank

- - most of age gap increase happens within sector
- ► Higher demand for decision-making intense occupations ► Evidence
 - all age gap increase occurs within occupation
 - inconsistent with over time increase we observe for wage rank
- ► Increases in returns to experience and education ► Evidence
 - they should work through distributional gap (Bayer and Charles, 2018)
 - returns to experience decreased because of larger supply of experienced (Jeong et al., 2015)

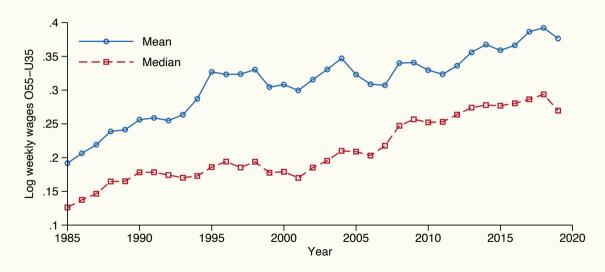
- - most of age gap increase happens within sector
- ► Higher demand for decision-making intense occupations ► Evidence
 - all age gap increase occurs within occupation
 - inconsistent with over time increase we observe for wage rank
- ► Increases in returns to experience and education ► Evidence
 - they should work through distributional gap (Bayer and Charles, 2018)
 - returns to experience decreased because of larger supply of experienced (Jeong et al., 2015)
- ► Changes in workforce composition ► Evidence
 - residual (education, gender, type of contract) age gap shows similar increase
 - focus on 55-60 males to avoid changes in composition b/c of pension reforms

- - most of age gap increase happens within sector
- ► Higher demand for decision-making intense occupations ► Evidence
 - all age gap increase occurs within occupation
 - inconsistent with over time increase we observe for wage rank
- ► Increases in returns to experience and education ► Evidence
 - they should work through distributional gap (Bayer and Charles, 2018)
 - returns to experience decreased because of larger supply of experienced (Jeong et al., 2015)
- ► Changes in workforce composition ► Evidence
 - residual (education, gender, type of contract) age gap shows similar increase
 - focus on 55-60 males to avoid changes in composition b/c of pension reforms
- Introduction of temporary contracts, duality of labor market
 - gap increases just the same if focus on U35 with permanent contracts

Conclusions

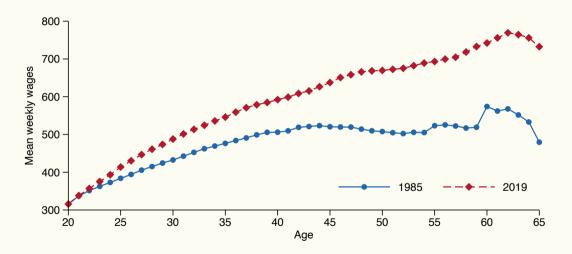
Document increase in age wage gap, despite larger supply of older workers

- Document increase in age wage gap, despite larger supply of older workers
- Provide possible explanation based on internal labor market: a story of "congestion"
 - Larger supply of older deteriorates career opportunities for younger workers
 - The trend could have been worsened by decreasing growth

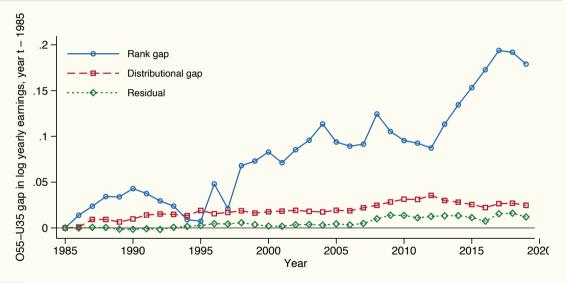

- Document increase in age wage gap, despite larger supply of older workers
- Provide possible explanation based on internal labor market: a story of "congestion"
 - Larger supply of older deteriorates career opportunities for younger workers
 - The trend could have been worsened by decreasing growth
- Find evidence in line with career spillover story:
 - Younger workers are less likely to be at the top of wage ranking, older are more likely
 - Younger workers enter in lower-ranked positions and grow less
 - Younger get pushed to lower-level jobs, while older more likely to be in top job levels
 - Within firm dynamics matter mostly for younger; younger pushed towards low-paying firms
 - Larger effects within older and slower-growing firms

- Document increase in age wage gap, despite larger supply of older workers
- Provide possible explanation based on internal labor market: a story of "congestion"
 - Larger supply of older deteriorates career opportunities for younger workers
 - The trend could have been worsened by decreasing growth
- Find evidence in line with career spillover story:
 - Younger workers are less likely to be at the top of wage ranking, older are more likely
 - Younger workers enter in lower-ranked positions and grow less
 - Younger get pushed to lower-level jobs, while older more likely to be in top job levels
 - Within firm dynamics matter mostly for younger; younger pushed towards low-paying firms
 - Larger effects within older and slower-growing firms
- ► These results point to the importance of negative career spillovers

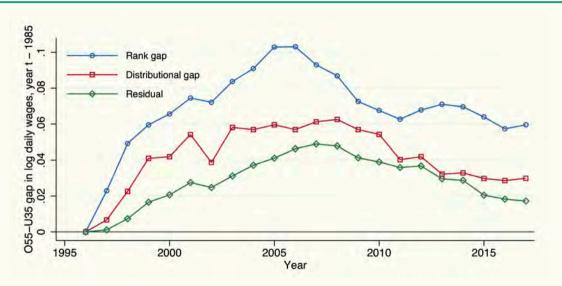
THANK YOU


Appendix

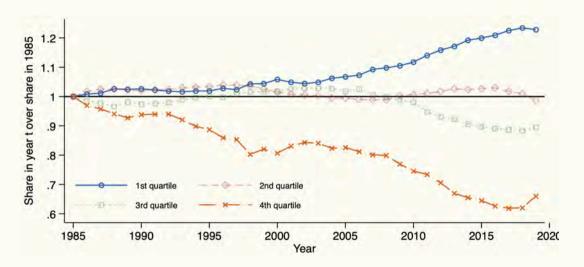
ITA: Increase of Age Wage Gap at Mean and Median



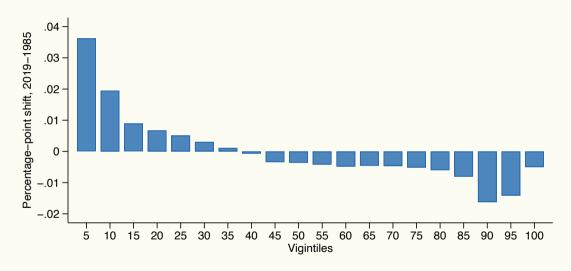
Steeper Wage Curve Over Life Cycle



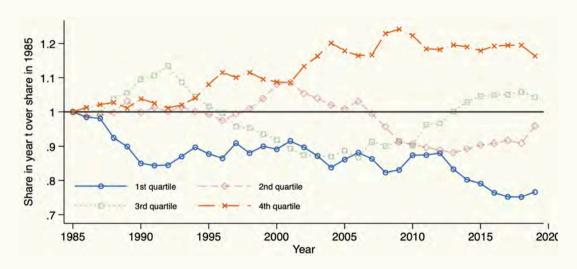
Rank Gap with Yearly Labor Earnings



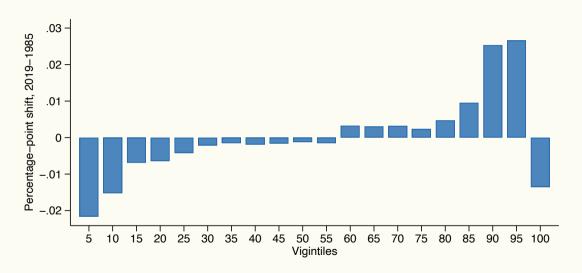
Rank Gap in Germany - Daily Wages



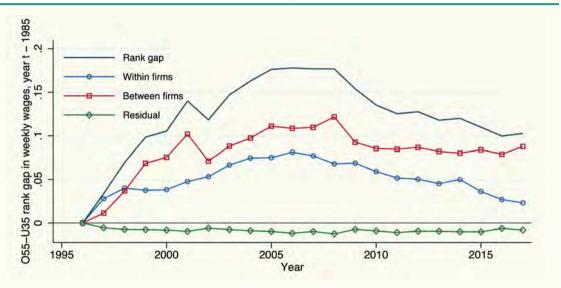
U35 Workers From Top to Bottom Quartile



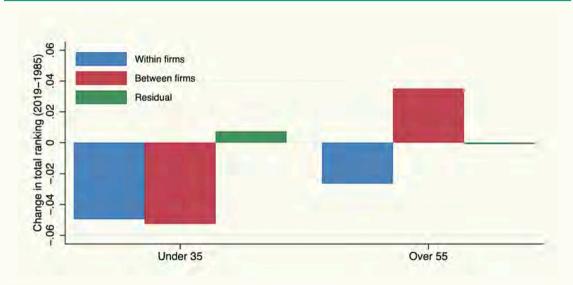
Vigintiles for U35 Workers



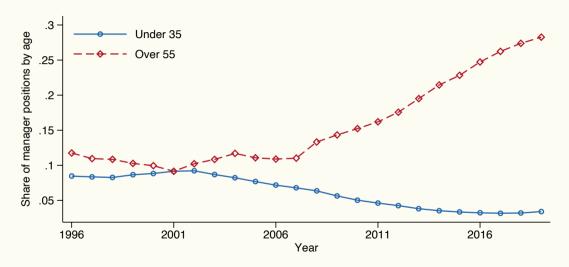
055 Workers From Bottom to Top Quartile



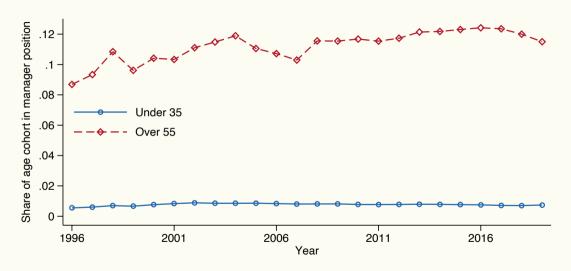
Vigintiles for O55 Workers



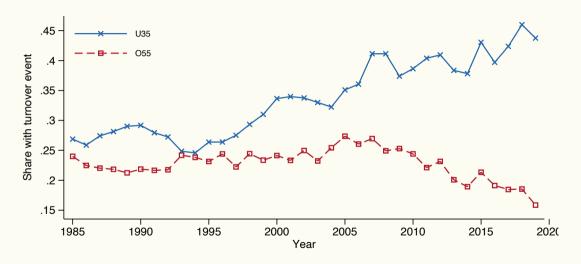
Between Vs. Within Firms in Germany



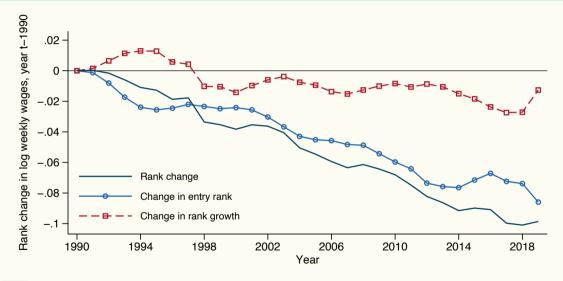
Between Vs. Within Firms in Germany - By Age Group



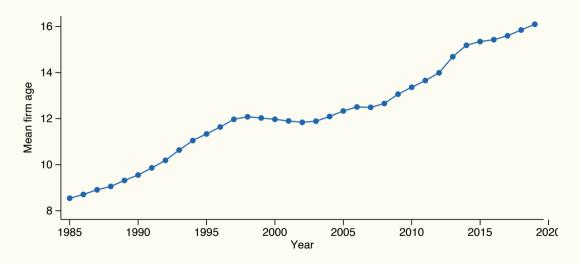
Shares of Managerial Positions



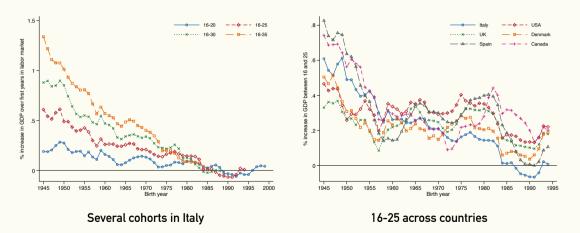
Shares in Age Group with Managerial Job



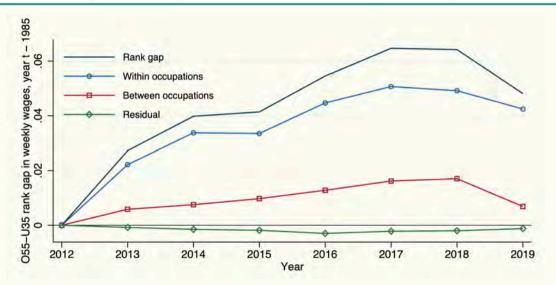
Shares with Turnover Events



U30 Loss Mostly Comes from Worse Rank at Entry



Mean Firm Age



Decreasing GDP Growth In Most High-Income Countries

Within-Occupation Component Accounts Most of Rank-Gap Increase

Numerical Framework - Mincerian Equation

Consider a simple but general wage equation:

$$\mathbf{w}_{\mathsf{i},\mathsf{a}}^{\mathsf{t}} = eta_{\mathsf{0}} + eta_{\mathsf{1}}^{\mathsf{t}} \mathbf{x}_{\mathsf{i},\mathsf{a}}^{\mathsf{t}}$$

- $w_{i,a}^t = wage of worker i of age group a in period t$
- $x_{i,a}^t = \text{quantity of wage-enhancing factor possessed by worker i in period t}$
- β_1^t = unitary price of factor x in period t
- Older workers posses on average a higher quantity of x
 - Age wage gap positive in every country and year

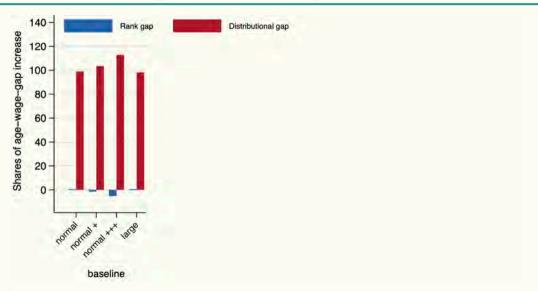
Numerical Framework - Mincerian Equation

Consider a simple but general wage equation:

$$\mathbf{w}_{\mathsf{i},\mathsf{a}}^{\mathsf{t}} = eta_{\mathsf{0}} + eta_{\mathsf{1}}^{\mathsf{t}} \mathbf{x}_{\mathsf{i},\mathsf{a}}^{\mathsf{t}}$$

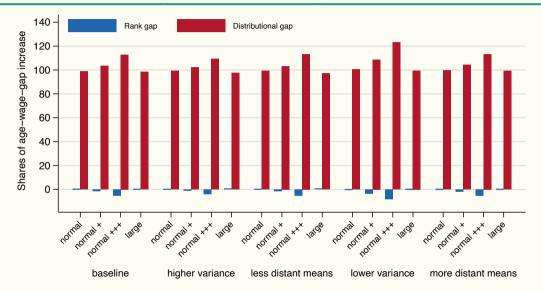
- $w_{i,a}^t = wage of worker i of age group a in period t$
- $x_{i,a}^t = \text{quantity of wage-enhancing factor possessed by worker i in period t}$
- β_1^t = unitary price of factor x in period t
- Older workers posses on average a higher quantity of x
 - Age wage gap positive in every country and year
- Age wage gap can increase because
 - Price of factor x increases
 - Gap in quantity of x between older and younger workers increases

Simulate Changes in Price


- Baseline scenario (matches data moments in Italian admin data):
 - $\textbf{x}_{Y}^{t} \sim \textbf{N}(4.6, 0.25)$ and $\textbf{x}_{0}^{t} \sim \textbf{N}(4.7, 0.49)$
 - $\beta_1^t = 1$, $\beta_0 = 1$
 - Share older workers $(\mathbf{s}_0^t) = 0.08$

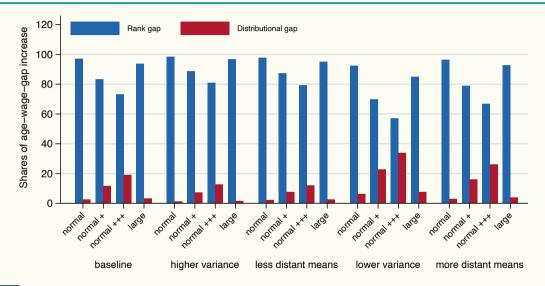
Simulate Changes in Price

- Baseline scenario (matches data moments in Italian admin data):
 - $\textbf{x}_{Y}^{t} \sim \textbf{N}(\textbf{4.6},\textbf{0.25})$ and $\textbf{x}_{0}^{t} \sim \textbf{N}(\textbf{4.7},\textbf{0.49})$
 - $\beta_1^t = 1$, $\beta_0 = 1$
 - Share older workers $(s_0^t) = 0.08$
- 4 simulated changes in price
 - "Normal" price hike: $\beta_1^{t'} = 2$
 - "Normal" price hike & more older workers: $eta_1^{t'}=$ 2, $\mathbf{s}_0^{t'}=$ 0.2
 - "Normal" price hike & way more older workers: $eta_1^{t'}=$ 2, $\mathbf{s}_0^{t'}=$ 0.35
 - "Large" price hike: $\beta_1^{t'} = 4$



Price Hikes Act Through Distributional Gap

Price Hikes Act Through Distributional Gap



Simulate Changes in Quantities

- Baseline scenario (matches data moments in Italian admin data):
 - $\textbf{x}_{Y}^{t} \sim \textbf{N}(4.6, 0.25)$ and $\textbf{x}_{0}^{t} \sim \textbf{N}(4.7, 0.49)$
 - $\beta_1^t = 1$, $\beta_0 = 1$
 - Share older workers $(s_0^t) = 0.08$
- ► 4 simulated changes in distribution of x
 - "Normal" distribution change: $\mathbb{E}\left[\mathbf{x}_{0}^{t'}\right]=4.8$
 - "Normal" distribution change & more older workers: $\mathbb{E}\left[x_0^{t'}\right]=4.8, s_0^{t'}=0.2$
 - "Normal" distribution change & way more older workers: $\mathbb{E}\left[x_0^{t'}\right]=4.8$, $s_0^{t'}=0.35$
 - "Large" distribution change: $\mathbb{E}\left[\mathbf{x}_{0}^{t'}\right]=5$

Quantity Changes Act Mostly Through Rank Gap

Intuition About Results of Numerical Framework

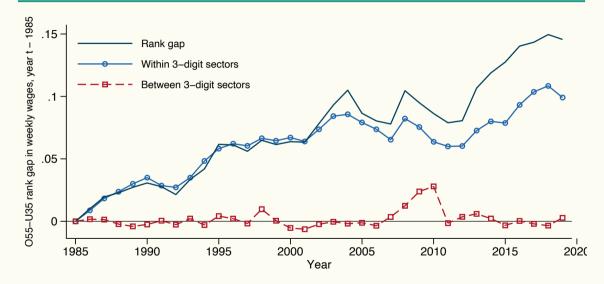
- Price increase when baseline difference in xs
 - increases dispersion of young and old distribution
 - spreads out the overall earnings distribution
 - captured by distributional component

Intuition About Results of Numerical Framework

- Price increase when baseline difference in xs
 - increases dispersion of young and old distribution
 - spreads out the overall earnings distribution
 - captured by distributional component
- Quantity increase with overlapping distributions
 - moves young and old distributions apart
 - more overlap at baseline: more older workers overcome young
 - captured by rank component

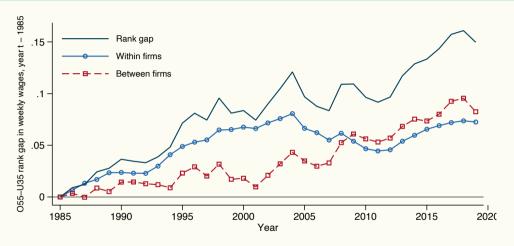
Intuition About Results of Numerical Framework

- Price increase when baseline difference in xs
 - increases dispersion of young and old distribution
 - spreads out the overall earnings distribution
 - captured by distributional component
- Quantity increase with overlapping distributions
 - moves young and old distributions apart
 - more overlap at baseline: more older workers overcome young
 - captured by rank component
- Similar logic in Bayer and Charles (2018) for black-white gap
 - positional: reduced discrimination, better access to schools
 - distributional: changes in returns to education, skills


Takeaways From Numerical Framework

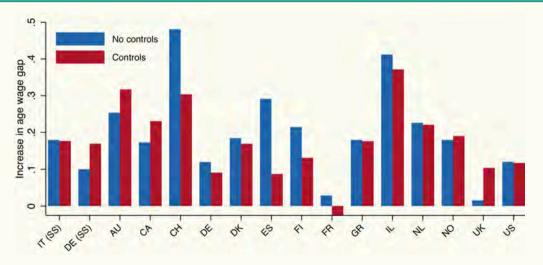
Increases in price of wage-enhancing factors incompatible with increased rank gap:

- ▶ Increase in returns to experience (Jones (2009); Azoulay et al. (2020); Jeong et al. (2015))
- ► Skill-biased technological change (Acemoglu & Autor (2011); Autor et al. (2006))



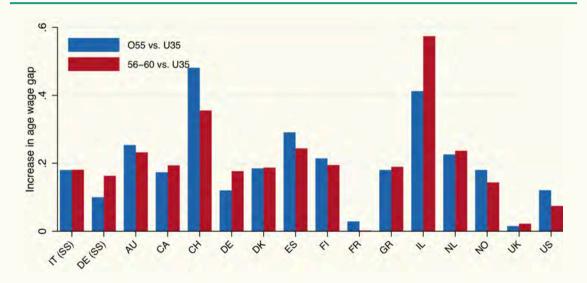
Within-Sector Component Accounts for 90% of Rank-Gap Increase

Between Vs. Within Firms: No High-Outsourcing Sectors


Notes: Sample does not include all sectors identified by Goldschmidt and Schmieder (2017) as primary receivers of most domestically outsourced jobs: 49.2, 49.4, 50.2, 50.4, 51.2, 52.1, 52.2, 56.2, 78.1, 78.2, 78.3, 80.1, 80.2, 80.3, 81.1, 81.2, 82.1, 82.2, 82.9 (NACE Rev. 2).

Changing Composition of U-35 and 055 Workforce

- Trends in other characteristics of young and old can be confounders
- We might be referring to age the byproduct of something else
- Some contemporaneous changes in demographics
 - increased share migrants in U35
 - increased share temporary contracts in U35
 - increased share of females in U35
 - increased education for both age groups
 - health improvements for older workers over time
 - longer working lives for 0-55



Age Wage Gap After Controlling for Demographic and Labor Variables

Notes: Age wage gap with controls uses residuals from year-specific regressions of log wages on gender, nationality (race in US), temp. contracts, education, disability status.

055 Workers = 56-60 Years Old Men

