For a few Euro more: An RDD analysis of unemployment benefits generosity

Yearly VisitInps Conference 2020

Anna D'Ambrosio¹ Vincenzo Scrutinio²

July 9th, 2020

¹PoliTo

²UniBo, CEP, IZA

• Unemployment benefits design is a crucial element for policymakers: primary tool to support the welfare of workers losing their job.

- Unemployment benefits design is a crucial element for policymakers: primary tool to support the welfare of workers losing their job.
- Optimal Policy: Consumption smoothing vs moral hazard.

- Unemployment benefits design is a crucial element for policymakers: primary tool to support the welfare of workers losing their job.
- Optimal Policy: Consumption smoothing vs moral hazard.
- Design of the policy is complex. Multidimensionality:
 - Duration.
 - Benefit amount.
 - Time pattern.
 - · Coordination with active labour market policy.

- Unemployment benefits design is a crucial element for policymakers: primary tool to support the welfare of workers losing their job.
- Optimal Policy: Consumption smoothing vs moral hazard.
- Design of the policy is complex. Multidimensionality:
 - Duration.
 - Benefit amount.
 - Time pattern.
 - · Coordination with active labour market policy.
- Extensive and credible research on effect of longer duration while research on other margins is thinner. Yet, effects may differ.

• **Research Question**: what is the effect of higher unemployment benefit generosity?

- **Research Question**: what is the effect of higher unemployment benefit generosity?
- **Identification** double cap scheme for Italian unemployment benefits: workers with different pre-unemployment wages exposed to different generosity.

- **Research Question**: what is the effect of higher unemployment benefit generosity?
- **Identification** double cap scheme for Italian unemployment benefits: workers with different pre-unemployment wages exposed to different generosity.
- Results:

- **Research Question**: what is the effect of higher unemployment benefit generosity?
- **Identification** double cap scheme for Italian unemployment benefits: workers with different pre-unemployment wages exposed to different generosity.
- Results:
 - Small (positive) effects of benefit generosity on benefit duration and time to next employment.

- **Research Question**: what is the effect of higher unemployment benefit generosity?
- **Identification** double cap scheme for Italian unemployment benefits: workers with different pre-unemployment wages exposed to different generosity.
- Results:
 - Small (positive) effects of benefit generosity on benefit duration and time to next employment.
 - No detectable change in post unemployment job characteristics.

- **Research Question**: what is the effect of higher unemployment benefit generosity?
- **Identification** double cap scheme for Italian unemployment benefits: workers with different pre-unemployment wages exposed to different generosity.
- Results:
 - Small (positive) effects of benefit generosity on benefit duration and time to next employment.
 - No detectable change in post unemployment job characteristics.
 - UI costs larger for older workers (for younger workers, comparable with increases in PBD)

- **Research Question**: what is the effect of higher unemployment benefit generosity?
- **Identification** double cap scheme for Italian unemployment benefits: workers with different pre-unemployment wages exposed to different generosity.
- Results:
 - Small (positive) effects of benefit generosity on benefit duration and time to next employment.
 - No detectable change in post unemployment job characteristics.
 - UI costs larger for older workers (for younger workers, comparable with increases in PBD)
 - Large heterogeneity in estimates across groups of workers.

• Effects of increasing amounts or duration may be different (Van Den Berg, 1990)

- Effects of increasing amounts or duration may be different (Van Den Berg, 1990)
- Two main approaches in studies of generosity:
 - Difference in difference: Lalive, Van Ours & Zweimuller (2006); Van Ours & Vodopivec (2008); Rosolia & Sestito (2012).
 - Threat \rightarrow change in macroeconomic conditions; composition; other reforms.

- Effects of increasing amounts or duration may be different (Van Den Berg, 1990)
- Two main approaches in studies of generosity:
 - Difference in difference: Lalive, Van Ours & Zweimuller (2006); Van Ours & Vodopivec (2008); Rosolia & Sestito (2012).
 - Threat \rightarrow change in macroeconomic conditions; composition; other reforms.
 - Regression Kink Design: Card, Leung, Mas and Pei (2015); Landais (2015); Britto (2016); Landais and Spinnewijn (2019)

- Effects of increasing amounts or duration may be different (Van Den Berg, 1990)
- Two main approaches in studies of generosity:
 - Difference in difference: Lalive, Van Ours & Zweimuller (2006); Van Ours & Vodopivec (2008); Rosolia & Sestito (2012).
 - Threat \rightarrow change in macroeconomic conditions; composition; other reforms.
 - Regression Kink Design: Card, Leung, Mas and Pei (2015); Landais (2015); Britto (2016); Landais and Spinnewijn (2019)
- Identification generally challenging: rules uniform for all individuals.

- Effects of increasing amounts or duration may be different (Van Den Berg, 1990)
- Two main approaches in studies of generosity:
 - Difference in difference: Lalive, Van Ours & Zweimuller (2006); Van Ours & Vodopivec (2008); Rosolia & Sestito (2012).
 - Threat \rightarrow change in macroeconomic conditions; composition; other reforms.
 - Regression Kink Design: Card, Leung, Mas and Pei (2015); Landais (2015); Britto (2016); Landais and Spinnewijn (2019)
- Identification generally challenging: rules uniform for all individuals.
- Italian setting offers a unique opportunity for a clear and intuitive analysis of UB generosity.

Institutional setting & Identification

Institutional setting (1): general

- Main unemployment benefit in Italy before 2013: benefit for ordinary unemployment with normal requirement (Disoccupazione Ordinaria a Requisiti Normali).
- Eligibility: at least one year of work in last two years before layoff; at least two years since first contribution to social security.
- Duration: 8 months if fired below 50 years of age and 12 months if fired above. We start pooling both groups.

• Benefit proportional to previous wages (average of 3 months before layoff).

- Benefit proportional to previous wages (average of 3 months before layoff).
- Declining replacement rate: 60% for first 6 months; 50% for following 2 months; 40% for last 4 months (if any).

- Benefit proportional to previous wages (average of 3 months before layoff).
- Declining replacement rate: 60% for first 6 months; 50% for following 2 months; 40% for last 4 months (if any).
- System of double cap based on average past wages:
 - Below threshold (1866 euros in our year): lower cap (931 euro per month).

- Benefit proportional to previous wages (average of 3 months before layoff).
- Declining replacement rate: 60% for first 6 months; 50% for following 2 months; 40% for last 4 months (if any).
- System of double cap based on average past wages:
 - Below threshold (1866 euros in our year): lower cap (931 euro per month).
 - Above threshold (1866 euros in our year): higher cap (1119 euro per month).

- Benefit proportional to previous wages (average of 3 months before layoff).
- Declining replacement rate: 60% for first 6 months; 50% for following 2 months; 40% for last 4 months (if any).
- System of double cap based on average past wages:
 - Below threshold (1866 euros in our year): lower cap (931 euro per month).
 - Above threshold (1866 euros in our year): higher cap (1119 euro per month).
- Total change in benefit: 15% for younger workers and 11% for older workers. Non negligible increase.

Double Cap System: benefit per month (first 6 months)

Identification Strategy

- Sharp increase in benefit beyond cutoff: sharp Regression Discontinuity Design.
- Classical specification:

$$y_{irt} = \beta_0 + \beta_1 \text{Above } \mathsf{T}_{irt} + \sum_{j=1}^k \gamma_j \tilde{w}_{irt}^j + \delta_j \tilde{w}_{irt}^j X \text{Above } \mathsf{T}_{irt} + X_{irt} \psi + \phi_t + \nu_r + \epsilon_{irt}$$

- Where \tilde{w}_{irt} is the distance of the wage from the cutoff.
- Estimation through local polynomial (Calonico et al., 2014) with optimal bandwidth (minimum square error).
- Standard errors clustered at province level.

Density and manipulation

nace G

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
	(log) Size	Permanent	Full Time	Female	Age	Above 50	Mkt Exp.	Tenure	White Collar	N-C
Above T	-0.071	-0.007	-0.008	-0.016	-0.204	-0.006	-0.307	-0.473*	0.025	-0.059
	(0.216)	(0.033)	(0.007)	(0.024)	(0.582)	(0.018)	(0.623)	(0.282)	(0.028)	(0.095)
Observations	131,317	131,317	131,317	131,317	131,317	131,317	131,317	131,317	131,317	131,317
Obs. used	25035	27522	23539	28438	19182	23377	17220	15346	14325	30099
Baseline	3.697	0.452	0.968	0.319	41.682	0.206	19.638	4.407	0.258	0.690
Clust. p	0.742	0.835	0.254	0.517	0.726	0.757	0.622	0.0933	0.373	0.531
Rob. p	0.622	0.966	0.226	0.687	0.521	0.588	0.421	0.0481	0.278	0.433

Graphs

Data

• Data drawn from Italian Social Security Archive (INPS). Part of VisitINPS program.

- Data drawn from Italian Social Security Archive (INPS). Part of VisitINPS program.
 - SIP: draw data for universe of recipients of UB with wage within 200 euros from the cutoff.
 - Uniemens: working histories in the private sector.

- Data drawn from Italian Social Security Archive (INPS). Part of VisitINPS program.
 - SIP: draw data for universe of recipients of UB with wage within 200 euros from the cutoff.
 - Uniemens: working histories in the private sector.
- Focus on 2012 after 8th February 2012: year in which legislation more binding and publication of new rules.

- Data drawn from Italian Social Security Archive (INPS). Part of VisitINPS program.
 - SIP: draw data for universe of recipients of UB with wage within 200 euros from the cutoff.
 - Uniemens: working histories in the private sector.
- Focus on 2012 after 8th February 2012: year in which legislation more binding and publication of new rules.
- Exclude workers not matched with their previous employer in UNIEMENS, above 64, and Construction Share.

Summary Stats

	Mean	Sd	Min	Max
Benefit Duration	24	13.58	0.14	51.43
Nonemployment Duration (2yc)	44.77	36.52	0	104
No Job	0.23	0.42	0	1
Recall	0.39	0.49	0	1
Female	0.36	0.48	0	1
Permanent	0.43	0.49	0	1
Full time	0.97	0.18	0	1
White Collar	0.30	0.46	0	1
Age	40.88	9.37	19.70	61.90
Above 50	0.18	0.39	0	1
Mkt Exp	18.81	10.61	2	50
Tenure	3.97	4.65	0.08	30
North	0.5	0.5	0	1
Centre	0.17	0.38	0	1
South and Island	0.33	0.47	0	1
Less than 15 empl.	0.47	0.5	0	1
Between 15 and 50	0.20	0.40	0	1
More than 50	0.33	0.47	0	1
Observations	129,263			
Workers	124,537			

Results

Past Wages and Generosity

Estimated change in monthly benefits at cutoff is 162 Euro; implies a change in overall benefits received of about 1062 euro.
Benefit Duration

Nonemployment Duration

	(1)	(2)	(3)	(4)	(5)	(6)
	Benefit	Nonemp (2y)	No job (2y)	Benefit	Nonemp (2y)	No job (2y)
Above T	0.936	1.982	-0.002	0.954**	2.651***	0.009
	(0.892)	(1.937)	(0.019)	(0.391)	(0.987)	(0.010)
Obs.	129,263	129,263	129,263	129,263	129,263	129,263
Obs. used	45,475	21,866	24,237	30,013	26,782	29,296
Baseline	23.573	44.077	0.223	23.573	44.077	0.223
Controls	NO	NO	NO	YES	YES	YES
Month FE	NO	NO	NO	YES	YES	YES
Region FE	NO	NO	NO	YES	YES	YES
Clust. p	0.294	0.306	0.917	0.015	0.007	0.375
Rob. p	0.278	0.205	0.907	0.021	0.007	0.312
Bandwidth	80.88	43.66	47.26	56.63	51.44	55.37

• Study differences in job finding rate over time:

• Study differences in job finding rate over time:

$$1(d_{irt} > d^*) = \beta_0 + \beta_1 \text{Above } \mathsf{T}_{irt} + \sum_{j=1}^k \gamma_j \tilde{w}'_{irt} + \delta_j \tilde{w}'_{irt} X \text{Above } \mathsf{T}_{irt} + X_{irt} \psi + \phi_t + \nu_r + \epsilon_{irt}$$

• Study differences in job finding rate over time:

$$1(d_{irt} > d^*) = \beta_0 + \beta_1 \text{Above } \mathsf{T}_{irt} + \sum_{j=1}^k \gamma_j \tilde{w}_{irt}^j + \delta_j \tilde{w}_{irt}^j X \text{Above } \mathsf{T}_{irt} + X_{irt} \psi + \phi_t + \nu_r + \epsilon_{irt}$$

• Equivalent to Column (3) and Column (6) in previous Table.

• Study differences in job finding rate over time:

$$1(d_{irt} > d^*) = \beta_0 + \beta_1 \text{Above } \mathsf{T}_{irt} + \sum_{j=1}^k \gamma_j \tilde{w}_{irt}^j + \delta_j \tilde{w}_{irt}^j X \text{Above } \mathsf{T}_{irt} + X_{irt} \psi + \phi_t + \nu_r + \epsilon_{irt}$$

- Equivalent to Column (3) and Column (6) in previous Table.
- Difference in Survival curves over two years.

• Study differences in job finding rate over time:

$$1(d_{irt} > d^*) = \beta_0 + \beta_1 \text{Above } \mathsf{T}_{irt} + \sum_{j=1}^k \gamma_j \tilde{w}_{irt}^j + \delta_j \tilde{w}_{irt}^j X \text{Above } \mathsf{T}_{irt} + X_{irt} \psi + \phi_t + \nu_r + \epsilon_{irt}$$

- Equivalent to Column (3) and Column (6) in previous Table.
- Difference in Survival curves over two years.
- Ideally: difference increasing first six months and then declining.

Differences over two years horizon

Time pattern: estimates

Post Unemployment Outcomes

	(1)	(2)	(3)	(4)	(5)
	(log) Daily wage	Full time	Permanent	Tenure	Recall
Above T	-0.019	0.004	0.011	2.452	0.007
	(0.014)	(0.011)	(0.013)	(1.714)	(0.021)
Obs.	108,458	109,777	109,777	109,777	109,777
Obs. used	18,490	19,490	22,015	25,633	17,859
Baseline	4.131	0.829	0.177	48.068	0.368
Controls	YES	YES	YES	YES	YES
Month FE	YES	YES	YES	YES	YES
Region FE	YES	YES	YES	YES	YES
Clust. p	0.180	0.705	0.433	0.152	0.745
Rob. p.	0.134	0.808	0.389	0.170	0.819
Order Poly	1	1	1	1	1
Order Bias (q)	2	2	2	2	2
Bandwidth	43.87	45.51	50.10	56.91	42

Mechanical and behavioural effects

- What is the additional expenditure related to behavioural responses?
- Following Schmieder and Von Wachter (2017), we scale the behavioural response by the mechanical effects of increasing benefit generosity.
- As the mechanical effect is different for individuals below and above 50 years, we compute the ratio separately for the two groups

Mechanical and behavioural effects

- $BC/MC = \frac{B \times b^{high}}{M \times (b^{high} b^{low})}$
- BC/MC ratio at the threshold for increasing PBD comparable to those below 50

• Heterogeneity. Effects vary widely across groups Table :

- Heterogeneity. Effects vary widely across groups Table :
 - Larger effects for: Older workers; Women; Workers from the Centre-North.

- Heterogeneity. Effects vary widely across groups Table :
 - Larger effects for: Older workers; Women; Workers from the Centre-North.
 - Gains in tenure for workers from younger and larger firms (wage losses).

- Heterogeneity. Effects vary widely across groups Table :
 - Larger effects for: Older workers; Women; Workers from the Centre-North.
 - Gains in tenure for workers from younger and larger firms (wage losses).
- Robustness:

- Heterogeneity. Effects vary widely across groups Table :
 - Larger effects for: Older workers; Women; Workers from the Centre-North.
 - Gains in tenure for workers from younger and larger firms (wage losses).
- Robustness:
 - Polynomial checks Table

- Heterogeneity. Effects vary widely across groups Table :
 - Larger effects for: Older workers; Women; Workers from the Centre-North.
 - Gains in tenure for workers from younger and larger firms (wage losses).
- Robustness:
 - Polynomial checks Table
 - Classical parametric Table

- Heterogeneity. Effects vary widely across groups Table :
 - Larger effects for: Older workers; Women; Workers from the Centre-North.
 - Gains in tenure for workers from younger and larger firms (wage losses).
- Robustness:
 - Polynomial checks Table
 - Classical parametric Table
 - Placebo Graph
- Alternative approaches:
 - Regression Kink Design: high variance and irregularities at kink

Conclusions

Conclusions

- This work exploits a unique setting to study UB generosity: clear identification framework.
- More generous benefits have detrimental effects on job search. Elasticity of time to next employment about 0.5 (from 0.12 to 1.25 for older workers).
- Overall no effect on job quality but large heterogeneity with some negative effects on wages partly offset by longer tenure.
- Setting offers additional opportunities for research: extending comparison between effects of increasing PBD vs. amount may yield important insights as to the consumption effects of UB generosity

Thanks for your attention!

Appendix

Double Cap System: Replacement Rate (first 6 months)

Double Cap System: Wage distribution

Density and Manipulation

(d) density NACE section G

(e) density NACE sections \neq G

Balancing Observables

Share of workers in Construction

Heterogeneity

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
	Female	Temporary	Permanent	Age<50	Age>50	Size>15	Size $<= 15$	N-C	S-I
	Benefit Duration								
Above T	1.111*	0.893*	0.797*	0.377	3.241***	1.077**	0.843*	0.961*	1.002**
	(0.655)	(0.515)	(0.465)	(0.407)	(0.887)	(0.490)	(0.476)	(0.517)	(0.477)
Baseline	23.179	19.406	28.663	21.850	31.218	20.679	26.804	21.915	27.338
				No	onemploym	ent			
Above T	3.625**	1.793	2.247	0.892	7.183***	2.157**	2.722**	2.964**	1.704
	(1.489)	(1.204)	(1.378)	(1.040)	(1.956)	(1.037)	(1.363)	(1.167)	(1.554)
Baseline	45.574	31.888	58.963	42.458	52.060	36.734	52.271	41.185	50.642
				(log) Wage New	/ Job			
Above T	-0.0122	-0.0337*	-0.00618	0.00691	-0.0862**	-0.0703***	0.0124	-0.00784	-0.0220
	(0.0215)	(0.0183)	(0.0228)	(0.0124)	(0.0340)	(0.0185)	(0.0182)	(0.0160)	(0.0225)
	Tenure New Job								
Above T	0.117	3.729*	0.383	3.822**	-4.032	6.152***	-2.907	1.061	4.444
	(2.512)	(2.139)	(3.092)	(1.930)	(3.333)	(2.351)	(2.896)	(2.483)	(2.858)
Baseline	49.588	44.281	53.666	48.215	46.754	45.556	51.163	48.479	47.106
Obs.	47,057	73,926	55,337	105,787	25,530	68,186	61,077	86,376	42,887
Controls	YES	YES	YES	YES	YES	YES	YES	YES	YES
Month FE	YES	YES	YES	YES	YES	YES	YES	YES	YES
Region FE	YES	YES	YES	YES	YES	YES	YES	YES	YES

Polynomial Order

	(1)	(2)	(3)	(4)		
	Benefit					
Above T	0.891***	0.954**	0.931**	1.357**		
	(0.344)	(0.391)	(0.419)	(0.570)		
		Nonemp	loyment			
Above T	2.459***	2.651***	2.405**	3.753***		
	(0.878)	(0.987)	(1.052)	(1.431)		
	Tenure					
Above T	1.857	2.452	2.291	2.188		
	(1.418)	(1.714)	(2.313)	(2.549)		
Observations	129,263	129,263	129,263	129,263		
Controls	YES	YES	YES	YES		
Month FE	YES	YES	YES	YES		
Region FE	YES	YES	YES	YES		
Order Poly	0	1	2	3		
Order Bias (q)	1	2	3	4		

Classical Parametric Estimation

	(1)	(2)	(3)	(4)	(5)	(6)
VARIABLES	Benefit	Nonemp	No job (2y)	Benefit	Nonemp	No job (2y)
Above T	1.285**	2.544	-0.001	1.107**	3.042**	0.007
	(0.614)	(1.553)	(0.015)	(0.456)	(1.168)	(0.012)
Observations	25,902	25,902	25,902	25,902	25,902	25,902
Baseline	23.573	44.077	0.223	23.573	44.077	0.223
Controls	NO	NO	NO	YES	YES	YES
Month FE	NO	NO	NO	YES	YES	YES
Region FE	NO	NO	NO	YES	YES	YES

Note: 2nd order polynomial; 50 euro bandwidth. Standard errors clustered at the LLM level.

Placebo

Regression Kink Design: Monthly benefit amount

Regression Kink Design: Pre-unemployment Firm size

Regression Kink Design: Nonemployment Duration

