
Labor Market Effects of 

Dirty Air. Evidence from 

Administrative Data 

 

Edoardo Di Porto 

Joanna Kopinska  

Alessandro Palma  

 

         ISSN 2532 -8565 
 

WorkINPS Papers 

Istituto Nazionale Previdenza Sociale 

 m
ar

zo
  2

02
2 

– 
 n

um
er

o 
49

  



 

 

 

 

 

 

Lo scopo della serie WorkINPS papers è quello di promuovere la circolazione di 
documenti di lavoro prodotti da INPS o presentati da esperti indipendenti nel corso 
di seminari INPS, con l’obiettivo di stimolare commenti e suggerimenti. 
Le opinioni espresse negli articoli sono quelle degli autori e non coinvolgono la 
responsabilità di INPS.  
 
The purpose of the WorkINPS papers series is to promote the circulation of 
working papers prepared within INPS or presented in INPS seminars by outside 
experts with the aim of stimulating comments and suggestions. 
The views expressed in the articles are those of the authors and do not involve the 
responsibility of INPS. 
 
 
 
Responsabile Scientifico  
Maurizio Franzini  
 
Comitato Scientifico  
Agar Brugiavini, Daniele Checchi, Maurizio Franzini  
 
 
 
 
 
 
 
 
 
 
In copertina: uno storico “Punto cliente” a Tuscania  
INPS, Direzione generale, Archivio storico  
 



 

 

 

 

 

 

I WORKINPS PAPER 

 

Le basi dati amministrative dell’INPS rappresentano una fonte statistica unica per 
studiare scientificamente temi cruciali per l’economia italiana, la società e la politica 
economica: non solo il mercato del lavoro e i sistemi di protezione sociale, ma anche i 
nodi strutturali che impediscono all’Italia di crescere in modo adeguato. All’interno 
dell’Istituto, questi temi vengono studiati sia dai funzionari impiegati in attività di ricerca, 
sia dai VisitInps Scholars, ricercatori italiani e stranieri selezionati in base al loro 
curriculum vitae e al progetto di ricerca presentato. 

I WORKINPS hanno lo scopo di diffondere i risultati delle ricerche svolte all’interno 
dell’Istituto a un più ampio numero possibile di ricercatori, studenti e policy markers. 

Questi saggi di ricerca rappresentano un prodotto di avanzamento intermedio rispetto 
alla pubblicazione scientifica finale, un processo che nelle scienze sociali può chiedere 
anche diversi anni. Il processo di pubblicazione scientifica finale sarà gestito dai singoli 
autori. 

 

 

 

         Maurizio Franzini  



 

 

 

 

 

 

Labor Market Effects of Dirty Air. 
Evidence from Administrative Data* 

 
EDOARDO DI PORTO 

 
DG Studi e Ricerche – INPS; 
DISES – CSEF  University of 
Naples “Federico II”, UCFS - 

University of UPPSALA 

JOANNA KOPINSKA 
 

DiSSE - Department of Social Sciences 
and Economics, Sapienza University of 

Rome, P.le Aldo Moro 
5, Rome (Italy); CEIS Tor Vergata 

ALESSANDRO PALMA 
 

Gran Sasso Science Institute 
(GSSI), 

CEIS Tor Vergata 
 
 

 

 

 



Labor Market Effects of Dirty Air.
Evidence from Administrative Data∗

Edoardo Di Porto† Joanna Kopinska‡ Alessandro Palma§

February 28, 2022

Abstract

We study the impact of air pollution on labor supply and wage compensations
in Italy. Matching administrative data on the universe of Italian dependent employ-
ees with PM10 concentrations and weather data at monthly frequency, we exploit
exogenous variation in wind speed to instrument for endogenous air pollution expo-
sure. We find that a one standard deviation increase in PM10 level, leads to a 7.3%
higher probability of sick leave and to an earning loss of 0.83 euros/worker/month.
These figures generated total social excess expenditures of 755 million euro during
the period 2011-2016 if we consider a pollution threshold set by the World Health
Organization and extend the effects to the total workers population. The hetero-
geneity analysis shows that the impacts are larger for workers in constructions and
services, for white and blue collars and for females and foreign workers, while we find
no impact on managers. The sick wage received by exposed workers is not always
aligned to the pollution exposure actually faced by different worker categories.

Studiamo l’impatto dell’inquinamento atmosferico sull’offerta di lavoro e le com-
pensazioni salariali in Italia. Abbinando i dati amministrativi sull’universo dei
dipendenti nel settore privato alle concentrazioni di PM10 e a dati meteorologici
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a frequenza mensile, sfruttiamo la variazione esogena della velocità del vento come
variabile strumentale per l’esposizione endogena all’inquinamento atmosferico. Tro-
viamo che un aumento di una deviazione standard nel livello di PM10, porta a un
aumento di probabilità di congedo per malattia pari al 7.3%, corrispondente a una
perdita di guadagno di 0.83 euro/lavoratore/mese. Queste cifre hanno generato
un eccesso di spesa sociale totale di 755 milioni di euro nel periodo 2011-2016 se
si considera una soglia di inquinamento fissata dall’Organizzazione Mondiale della
Sanità e si estendono gli effetti alla popolazione totale dei lavoratori. L’analisi di
eterogeneità mostra che gli impatti osservati sono maggiori per i lavoratori nel set-
tore delle costruzioni e dei servizi, per gli impiegati e operai, e per le lavoratrici
e lavoratori stranieri, mentre non troviamo alcun impatto sui dirigenti. Il salario
percepito durante l’assenza da malattia non è sempre proporzionale all’esposizione
all’inquinamento effettivamente affrontata dalle diverse categorie di lavoratori.

Keywords: air pollution, labor supply, sick leave, social cost of pollution

JEL: I18, J81, Q51, Q53



1 Introduction

It is widely documented that air pollution exposure has detrimental health effects, par-

ticularly in more vulnerable population groups (Chen et al., 2013; Dominici et al., 2014;

Chay and Greenstone, 2003a; Wellenius et al., 2005; Giaccherini et al., 2019; Deryugina

et al., 2016, among others). The literature has also unveiled less severe effects such as

headaches, irritation in the nose and lungs that exacerbate asthma episodes, changes in

blood pressure and changes in behavior (Pope, 2000; Auchincloss et al., 2008; Keet et al.,

2018; Kampa and Castanas, 2008; de Prado Bert et al., 2018; Sager, 2019).

Recent studies have documented that air pollution affects labor supply and productivity

(Hanna and Oliva, 2015; Isen et al., 2017; Kim et al., 2017; Montt, 2018). The effects

found in these studies are large and generate sizable costs for the labor market, where

net of direct effects on wages, pollution contributes to deteriorate health capital, a key

ingredient for the labor market. Among the various types of pollutants, particulate matter

(PM), which consists of particles of very small size, is of particular concern for policy

makers because of its large diffusion and ability to penetrate indoors, affecting the work

environment (Thatcher and Layton, 1995; Chang et al., 2019).

Motivated by this recent literature, we study the impact of particulate matter pollution

on labor supply and wage compensations resulting from sick leaves episodes. Our anal-

ysis focuses on Italy, a country with a generous welfare system and strict environmental

regulation, with pollution levels comparable with other advanced economies. We combine

individual employment data on the universe of Italian dependent employees in the private

sector with granular PM10 concentrations and weather data.

Estimating the causal effect of air pollution on labor supply is complicated by several

empirical challenges that can lead to endogeneity (Dominici and Zigler, 2017; Moretti

and Neidell, 2011, among others). These can include, for instance, measurement error

in assigning pollution shocks, strategic behavior of individuals who avoid more polluted

places and high pollution days, and other unobserved determinants of labor supply that

can co-vary with ambient pollution. To rule out these sources of bias, we exploit exoge-

nous variation in wind speed to instrument for endogenous air pollution exposure in an

individual fixed effects model.
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Our main findings show that a one standard deviation increase in PM10, leads to a 0.147

percentage point increase in the probability of taking a sick leave, which represents a 7.3%

increase with respect to the baseline average of sick leaves observed in the data. Similarly,

the effect of a one standard deviation increase in PM10 on sick wage compensation repre-

sents a 7.7% increase in the average amount of sick wage compensation. When we analyze

the effect of pollution on labor supply in different sub-samples of the data, we find that

the effects are heterogeneous, with the impact being larger in constructions sector and for

blue collar workers. By analyzing the effects through the lens of demographic variables,

we find that female and foreign workers bear stronger negative impacts of pollution ex-

posure. Finally, we find that the heterogeneity in the effect of PM10 on sick leaves are

not always aligned with the heterogeneity found across the same groups for sick wage

compensations received by affected workers.

This study offers important improvements with respect to the exiting literature. It is the

first that considers the universe of private dependent employees and the heterogeneous

pollution effects in an advanced economy with a well regulated environmental policy

setting. Therefore, the implications deriving from our results can be valid also in other

countries where individuals face comparable pollution levels. Along with the effects on

labor supply, we estimate a direct measure of social cost of air pollution based on the

wage compensations paid by the social security as a sick benefit. From these estimates

we extrapolate the aggregated excess social expenditure for affected workers. It results

that during the period 2011-2016 air pollution generated large social costs, which amount

on average to 125 million euro/year if we consider the universe of private workers in Italy

and a threshold of pollution concentrations based on the national average. This figure

represents nearly 4.5% of the total annual social expenditure for sick leaves in terms of

compensating wages.

2 Background

There is a flourishing and influential literature analyzing the effect of air pollution on labor

supply and worker’s productivity. Early observational studies by Ostro (1983, 1987) and

Ostro and Rothschild (1989) represent pioneering attempts in the economics literature
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that find a robust correlation between particle pollution and labor supply. Some years

later, Hansen and Selte (2000) study the effect of several pollutants on sick leaves using

individual data from a large office in Oslo, finding a significant association between sick

leaves and PM10 concentration, with more ambiguous findings for SO2 and NO2.

Though, measuring the causal effect of air pollution is challenging since the exposure may

not be random across individuals and locations (Chay and Greenstone, 2003b), and this

may lead to severely biased estimates. To address endogeneity in pollution exposure, more

recent studies exploited sophisticated empirical techniques based on a quasi-experimental

approach. For instance, Currie et al. (2009) use data from elementary and middle school

children to investigate the causal effect of exposure to PM10 and carbon monoxide (CO)

on school absenteeism in Texas, finding a significant drop in school attendance driven by

higher CO concentrations. Hanna and Oliva (2015) study the impact of sulfur dioxide

(SO2) exposure on labor supply in Mexico City exploiting the closure of a large refinery

as a natural experiment for exogenous pollution variation. They find that the closure led

to a decline of about 20% in SO2, which resulted in an increase of about 3.5% in work

hours per week for workers in the surrounding neighborhoods.

Kim et al. (2017) estimate the short and long run effects of air quality on workers’ pro-

ductivity in Korea using the natural experiment of forest fires caused by farmers and

transported from El Niño. The authors show that an important channel through which

pollution reduces labor supply is due to caregiving for dependent people. Caregiving is

found to be a key mechanism in reducing labor supply also in the study by Aragon et al.

(2017), who find that the effect of air pollution is concentrated among households with

more vulnerable dependents such as small children and the elderly. Similarly, analyzing a

long panel of individual labor data and pollution concentrations in Santiago, Montt (2018)

concludes that women with children, who need assistance if unable to attend school, are

the most susceptible to air pollution exposure.

The long-run effects of air pollution on the labor market are analyzed by Isen et al. (2017),

who use exogenous variation in pollution induced by the introduction of the Clean Air

Act (CAA) in the United States in 1970. They estimate that the cohorts of individuals

living in counties subject to the policy have experienced better later-life outcomes such

as a higher wage and job participation.
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More recently, an important strand of literature investigated the effects of milder fluctua-

tions in air pollution on human capital, focusing on worker productivity. Graff Zivin and

Neidell (2012a) study the impact of ambient ozone concentrations using data from a large

farm in California. Controlling for individual labor supply and avoidance behavior, they

find that a 10 parts per billion drop in ozone concentration increases worker productivity

by 5.5%. Lichter et al. (2017) find significant negative effects of PM10 on soccer players’

productivity using within-player variation. They show that a one standard deviation in-

crease in the concentrations reduces the number of total passes played by a fraction of

0.4–2.4% of a standard deviation. Chang et al. (2016) and He et al. (2019) study the con-

temporaneous and cumulated effect of PM2.5 – a pernicious pollutant that penetrates and

persists in the indoor environment – on workers productivity respectively in the US and

China, two settings with different compliance status with respect to the hazardous PM2.5

concentration limits. Both studies find a decrease in productivity caused by higher PM2.5

concentrations, with limited additional damages when the exposure accumulates over up

to 30 days. Finally, Chang et al. (2019) consider a multi-pollutant setting to analyze the

productivity effect of air pollution for Chinese call-center workers using the Air Pollution

Index – a composite measure of air quality. Their results confirm the negative effects on

worker productivity found in previous studies that focused on single pollutants and on

more physical working activity.

Despite the well documented effects on labor supply and, more recently on on-the-job

productivity, very few studies focus on the monetary costs associated with air pollution

health impacts leading to reduced labor activity of those affected or increased labor supply

for those avoiding exposure. A simple but insightful cost calculation is provided by Hanna

and Oliva (2015), who show that the increase in the amount of work hours due to the

closure of a refinery in Mexico City generated a total gain of 125 USD/worker. Yet, this

calculation can be seen as conservative since it accounts only for the salary that the worker

would not have taken if exposed to air pollution, while it does not consider the welfare

costs born on the social security system for exposed workers.
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3 Data

In this paper we combine national administrative data from the Italian National Institute

of Social Security (Istituto Nazionale della Previdenza Sociale - INPS), air pollution con-

centrations from the European Centre for Medium-Range Weather Forecasts (ECMWF),

and weather data from the Joint Research Centre of the European Commission. This

section describes each data source in detail.

3.1 Labor data

We use a longitudinal administrative employer-employee dataset provided by INPS, one

of the largest administrative organizations at the European level. INPS collects data

on the universe of private sector employees in Italy, who represent more than 70% of

Italian workers. The structure of the data resembles an unbalanced longitudinal sample

at the individual (and firm) level and a monthly frequency. Together with earnings and

employment histories, INPS data include socio-demographic information regarding age,

sex, nationality as well as municipality of birth, and that of residence of both individuals

and firms. In the period considered, we obverse in the data 7,561 Italian municipalities,

which represent the finest level of administrative breakdown.

In terms of labor outcomes, the dataset contains information on earnings and qualifications

defined on a hierarchical categorical variable. Most importantly, we exploit information

on sick leaves and the amount of earnings loss due to the absence period. In particular, in

INPS data a sick leave is defined as an absence from the workplace for a period longer than

five working days, during which workers receive an extended sick absence benefit paid by

social security system (INPS). The compensating wage amounts to 50% of forgone salary

for documented sick leaves within a period between 4 and 20 days.1 Unfortunately, we do

not observe in the data the exact diagnosis for each sick leave, which means that our anal-

ysis has a limited capacity in unveiling the physiological mechanism of pollution exposure

in reducing labor supply. Nevertheless, many clinical and epidemiological studies have

established a well known link between exposure to particle pollution and specific diseases
1For sick leaves longer than 20 days, the compensation increases to 66.6% of forgone salary, for a

maximum period of 180 days for each calendar year.
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that can lead to sick leaves such as pulmonary or cardio-vascular diseases (Brunekreef and

Holgate, 2002, among others). Yet, our individual fixed effects mitigate this limitation as

they allow to account for any time-invariant factor, including chronic health diseases and

individual-specific preferences for clean air.

Our analysis includes years in the between 2011 and 2016, a period compatible with the

availability of pollution data. We restrict the sample to working age individuals (18-65)

who worked at least 8 weeks in each year. Additionally we do not consider earnings falling

outside the first and 99th percentile of the yearly earnings distribution. This sample

selection leaves us with a total of 440 million observations. Due to the computational

burden, we select a random draw of 15% for a total of nearly 67 million observations

(roughly one million individuals followed for a period of 72 months).

We exploit the information on municipality of the firm in order to assign pollution con-

centrations exposure to each worker. Our baseline specification is based at the individual

and monthly level. Additionally, we carry out analysis of heterogeneous effects by each

category of economic sector, gender, nationality and qualification. To do so, we construct

sub-samples of individuals falling into each of the aforementioned categories and collapse

the data at the municipality × month cells. This procedure comes at no cost of loss in

precision in the air pollution variation, as the data originally come at this temporal and

spatial grid.2 The category-specific data sets consist in 510,604 municipality × month

cells.

3.2 Environmental Data

We collect air pollution concentrations from the Copernicus Atmosphere Monitoring Ser-

vice (CAMS), which is implemented by the ECMWF on behalf of the European Union. At

the time of writing, CAMS validated data are available from 2011 to 2016. We consider
2While allowing for an easier computational setting and preserving precision in assigning pollution

exposure, this procedure does not allow to fully capture potential individual-level confounding factors
that may affect our outcomes of interest in each cell. A fruitful approach to overcome this limitation
was employed, among others, by Isen et al. (2017) and Currie et al. (2015), who control for micro-
level heterogeneity through a compositional adjustment procedure. Replicating this approach however
would have required a richness of information available at cell level that we could not exploit both for
data availability reason and privacy limitations in importing these data according with the rules of the
VisitInps research program.
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particulate matter with a diameter of 10 micrometers or less in aerodynamic diameter

(PM10) which is a mixture of solid and liquid particles suspended in the air originating

from both natural and anthropogenic sources, mainly from fuel combustion for vehicles

and heating EEA (2016). PM10 is considered one of the most diffused and harmful air

pollutants (EEA, 2019; Chay and Greenstone, 2003c; OECD, 2019).

CAMS data are based on observations from satellites, monitoring stations and a reanalysis

process, representing the state-of-the-science for air quality data in Europe.3 Using a

Geographic Information System, we assign daily level averages of PM10 concentrations to

each Italian municipality. In the case of large urban centers that contain more than one

grid cell, we compute the average for that area based on the cell’s centroid.

As an alternative to satellite data, several studies that analyze air pollution impacts em-

ploy concentrations data based on monitoring stations. Yet, air pollution reanalysis data

offer several improvements over monitoring stations measures. For instance, readings from

monitoring stations are often discontinuous due to temporary interruptions or prolonged

stops (Deschênes et al., 2017; Bharadwaj et al., 2017, among others), and missing values

may contaminate monthly estimates derived from daily data (Auffhammer et al., 2013).

Moreover, the number of monitoring stations is often limited and may vary in a non-

random order, giving rise to potential sample selection (Grainger and Schreiber, 2019;

Fowlie et al., 2019). Conversely, CAMS data are originally designed at hourly frequency

over a regular grid of about 18×18 km, offering a substantial advantage of a homoge-

neous and consistent measures of PM10 concentrations over the entire period and area

considered in this analysis.

Figure 1 shows the geographical distribution of PM10 concentration levels averaged over

the period 2011-2016 in all Italian municipalities. Despite PM10 affects all the Italian

territory, pollution levels are much higher in Northern areas corresponding to the Padana

valley. This area is characterized by a large presence of industrial sites, intense economic

activity and climate conditions that could favor the accumulation of pollutants due to a

low air circulation. The pattern described in Figure 1 is confirmed and even sharper if
3Specifically, CAMS data combine observations from past and current satellite instruments and com-

puter models for reanalysis. It is worth noting that mere satellite observations often have gaps due to
instrumental failures or clouds obscuring the view, and inconsistencies may occur because of a difference
in resolution between instruments. CAMS data do not suffer from this limitation.
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we look at Figure 2, which shows the geographical distribution of high PM10 days, that is

the total number of days exceeding the air quality standard for PM10 concentrations.4 A

high number of Northern Italian areas experienced a very high number of exceeding days,

up to nearly 10% considering the period in between 2011 and 2016.

3.3 Weather data

Weather data come from the Gridded Agro-Meteorological dataset, collected by MARS

AGRI-4-CAST and managed by the Joint Research Center of the European Commission.

This database includes several meteorological parameters gathered by weather stations

and interpolated on a 25×25 km grid. We obtain daily information on the level of pre-

cipitations expressed in millimeters, temperatures (minimum, maximum and average) in

Celsius degrees and wind speed in meter per second (m/s). We repeat the same proce-

dure described above in order to obtain municipality-specific weather measures. Following

Deschênes and Greenstone (2011) and Deryugina et al. (2019), we discretize the daily tem-

perature distribution into a fixed set of 5-degree bins for a total of 15 bins, to allow for

a semi-parametric control for temperature. We calculate the number of days with tem-

perature within each bin and then collapse the dataset at monthly level to be consistent

with our labor market data. The same procedure is applied to calculate bins of total

precipitations with an interval of 1 mm.

Descriptive statistics of selected variables are reported in Table 1. Roughly 60% of the

individuals are men, most of whom aged 41 to 45. The probability of going on a sick

leave amounts to 2% and workers accrue monthly on average 11 euro from sick days

compensations, while the average monthly wage is 1,680 euro. When we look at aggregated

data, there are on average 1,356 workers in each municipality × month cell, corresponding

to 28 sick days on average. In terms of sectoral distribution, 38% of workers are in

the private services, while 29% in manufacturing. In terms of qualifications, blue collar

workers amount to 67% of the sample while 26% are white collar workers.
4The air quality standards are set by the European Commission for each pollu-

tant. For PM10, the daily concentration is 50 µg/m3. For further details, see
https://ec.europa.eu/environment/air/quality/standards.htm.
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4 Econometric strategy

Our goal is to estimate the causal relationship between PM10 exposure and a set of labor

market outcomes which includes labor supply and the associated sick benefits paid by the

social security institute. In this section we describe the empirical challenges arising in our

setting and how we address them.

Individual health status and exposure to pollution are both likely to affect the probability

of taking a sick leave. Additionally, individual health status determines individual vul-

nerability to a given level of air pollution exposure. This individual vulnerability together

with socio-economic determinants give rise to different willingness to pay for clean air

and results in different intensity of avoidance efforts (Neidell, 2009). For instance, the

adverse effect of working in polluted zones can be offset by living in less-polluted areas

or adoption of defensive behavior such as air filters. Therefore, there is a wide range of

lifestyle adjustments that may independently affect the probability of taking a sick leave

(Graff Zivin and Neidell, 2009). Moreover, measurement error in assigning pollution ex-

posure represents another possible source of bias because pollution measures are available

in locations that are often far from where individuals are actually exposed. Finally, air

pollution is highly procyclical to the economic activity. This means that economic shocks

may simultaneously affect both labor supply and pollution emissions even at a local level

(Hanna and Oliva, 2015; Graff Zivin and Neidell, 2012b). In this setting simple OLS

estimates are likely to be biased as pollution exposure assignment may be endogenous

due to the aforementioned issues regarding sorting, avoidance, measurement error and

concomitant seasonal factors often unobserved in the data (Schlenker and Walker, 2015;

Deryugina et al., 2019).

In this perspective we adopt an individual fixed effects model, which allows us to control

for individual observable confounding factors such as biological vulnerability, willingness

to pay for clean air and the resulting sorting and avoidance time invariant attitudes.

Therefore, we start from the following individual fixed effects model:

Yi,m,t = α + βPM10m,t +W ′
m,tρ+ φXi,t + ηi + θt + µi,m,t (1)

9



where outcome Yi,m,t is, respectively, the predicted probability of taking a sick leave for

a period of at least four working days, and the amount of earnings (in euro) paid by the

social security system as a sick benefit for the individual i in municipality m and year-

month t. PM10m,t is the average PM10 concentration (in µg/m3), and Wm,t is a matrix

of semi-parametric controls for weather conditions which may independently affect labor

supply; these include no. of days with 5 C◦ bins of maximum temperature and 1-mm

bins of total precipitation. Xi,t is the individual level percentage of part-time days, while

ηi and θt are, respectively, individual and year-month fixed effects. Finally, µi,m,t is a

normally-distributed error term clustered at the municipality level.5

Our parameter of interested is β, which represents the effect of one-unit increase in PM10

on the individual probability of taking a sick leave, and the amount of sick benefits

received, respectively. In this model, individual fixed effects control for all time-invariant,

unobserved individual specific characteristics such as predetermined health and differences

opportunity cost of time of sick leaves, while year-month fixed effects control for time

varying effects of factors such as national policy regulation, seasonal epidemics and other

common shocks.

Event though our baseline individual fixed effects model purges the estimates from all

time-invariant unobserved heterogeneity, it does not allow us to solve potential endogene-

ity issues arising from sorting and simultaneity between pollution and economic activity.

To address these important concerns, we exploit as-good-as-random variation in local

wind speed as an instrument for air quality proxied by PM10 concentrations. It is indeed

well documented that weather factors, wind in particular, have the capacity to disperse

air pollution (Czernecki et al., 2017; Chu et al., 2004; Zhang et al., 2012; Lu and Fang,

2002) while being random around a local mean. As discussed earlier in Section 2, while

other studies exploit specific emission-generating episodes where wind moves air pollution

between two specific areas, we adopt a generalization of this setting which allows to carry

out a large-scale analysis including contiguous areas (municipalities). In this setting, we

estimate the following 2SLS model:

PM10i,m,t = α + γVm,t +W ′
m,tδ + φXi,t + ηi + θt + εi,m,t (2)

5Our baseline results are clustered at the municipality level, following the level of aggregation of our
pollution “treatment” assignment (Bertrand et al., 2004).
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Yi,m,t = α + βP̂M10m,t +W ′
m,tρ+ φXi,t + ηi + θt + εi,m,t (3)

where the term P̂M10m,t is the first stage predicted value of PM10 instrumented by wind

speed, conditional on the full set of fixed effects and other controls.

In addition to our baseline fixed effect model specification, when using cell-level data we

also adopt a more demanding specification to account for time-varying determinants of

province common to all individuals working in a particular municipality and year-month

pair. We do so by including province × year-month linear trends.

Moreover, as the relationship between windspeed and pollution may extend beyond the

administrative boundaries of municipalities, such as provinces, in our first-stage we use

an alternative clustering for the standard errors (s.e.), which yields similar results.6

Finally, it is important to highlight that we do not consider a multi-pollutant model,

yet, wind can affect also other air pollutants. In such a setting, a researcher faces a

potential identification problem rooted in the violation of exclusion restriction. Since

CAMS data are not available for all main pollutants during our period of analysis, we

cannot explicitly deal with this issue. Nevertheless, the literature has highlighted as PM10

is highly correlated with other harmful pollutants such as PM2.5, NO2 and CO, being

emitted from the same sources such as heating or transport. Therefore, while we cannot

interpret our estimates as pollutant-specific impacts, we refer to PM10 concentration as a

proxy for overall air quality (Chang et al., 2018; Dominici et al., 2010).

5 Results

We present the results of our analysis starting from the individual fixed effects model,

followed by the 2SLS model in Section 5.1. Subsequently, in Section 5.2 we analyze the

impact of particle pollution on the sick leaves across various population groups relevant

in terms of potential exposure and vulnerability. We thus divide the data into three
6When clustering on provinces, we obtain a s.e. of 0.131, which is slightly larger than the one obtained

with clusters on municipalities (s.e.: 0.092). Importantly, both inferences lead to obtain coefficients
statistically significant at 1%.
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major labor sectors, according to qualification, gender and migrant status, respectively.

In Section 5.3 we then offer a back-of-the-envelope calculations of the aggregated social

expenditures due to pollution exposure based on the estimates here carried out. Finally,

in order to support the validity of our identification strategy, in Section 5.4 we show

results based on a set of checks and alternative model specifications.

5.1 Main effects

Table 2 presents the results on the effect PM10 fluctuations on labor supply (column (1))

and on sick days compensation (column (2)), obtained from our baseline OLS estimates of

the individual fixed effects model. The predicted probability of taking a sick leave due to

a one µg/m3 increase in PM10 pollution exposure causes an increase of 0.004 percentage

points, which corresponds to a 0.2% increase in the average sick leave probability. If

scaled up to a one standard deviation (s.d., equivalent to 6.14 µg/m3), it amounts to

an average increase of 0.024 percentage points, which more than doubles the sick leave

probability. Column (2) shows that the effect of a one s.d. increase in PM10 on the

sick compensation wage amounts to 0.10 euro/worker/month, or a 0.9% increase in the

average compensation wage.

As already discussed, our baseline individual fixed effect model may suffer from omitted

variable bias and other confounding factors, therefore the associated results are not likely

to represent the true effect of pollution on sick leaves and associated sick wages compen-

sations. Below we deal present the IV estimates based on Equation (3) of Section 4. To

begin with, we discuss the first stage effect of wind speed on PM10 obtained in a 2SLS set-

ting and presented in Table 3. After controlling for other weather factors and individual

and year×month fixed effects, there is sufficient residual variation to estimate the effect of

wind speed on monthly fluctuations of air pollution: for each additional speed unit (m/s)

in wind, PM10 concentration decreases by about 0.7 g/m3; the coefficient is statistically

significant at 1%. We also run our first stage estimates by clustering standard errors at the

province level. Provinces represent higher-level administrative units and include several

local labor market areas in which pollution exposure is more homogeneous with respect

to municipality boundaries. First stage results clustered on provinces are presented in

Appendix Table A2 and confirm that our coefficient estimates remain significant at 1%
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level. We also test for weak identification and report the F-statistics in any estimate

table, which are always well above 10 according with the conventional significance levels

suggested by Staiger and Stock (1997). The values of our F-statistics are robust also to

more stringent identification conditions developed in more recent contributions (Bound

et al., 1995, among others). Finally, in Section 5.4 we run a simple robustness check to

show the monotonicity of our IV, where the effect of the wind speed increases affects PM10

always in the same direction.

The second-stage results, presented in column (1) of Table 4, show that the causal effect

of air pollution on labor supply is much larger than OLS results previously presented in

Table 2. Specifically, we find that one additional µg/m3 in PM10 concentration causes an

increase in the probability of an individual going on a sick leave by 0.024 percentage point,

which represents an increase of 1.2% with respect to the baseline probability of sick leave.

If scaled up to a one s.d., the effect amounts to 7.3% increase with respect to the average

of sick leaves in the estimation sample. Similarly, the effect on sick wage compensation

presented in column (2) of Table 4, indicates an additional 0.83 euro/worker/month for a

one s.d. increase in PM10, representing 7.7% of the average amount of sick wage compen-

sation. When we cluster standard errors on provinces to account for errors correlation in

larger geographical units, our results preserve full statistical significance (see Appendix

Table A1).

The fact that our IV estimates are approximately 7-8 times larger with respect to the OLS

estimates can be considered as a standard result in the literature that focuses on the effects

of pollution in a quasi-experimental setting (Deryugina et al., 2019, among others). OLS

fixed effects estimates are lower as variation in pollution is correlated with many unob-

served factors that mitigate the detrimental effect of pollution on health. Selection issues

and economic activity fluctuations are likely to bias the estimates, as workers exposed

in large urban areas on high pollution days might actually be represent individuals with

better socioeconomic status, which is likely to mitigate their potential pollution harm.

Additionally, measurement error in pollution concentrations if not accounted for, is likely

to cause a misclassification in exposure and a consequent attenuation bias.
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5.2 Heterogeneous effects

The large dimension of the dataset employed in this study allows us to carry out a rich

heterogeneity analysis without losing statistical power. We concentrate on a number of

demographic and labor dimensions that are likely to drive the effects of pollution in a

differentiated manner. For this purpose, as already introduced in then Section 3.1, we

re-estimate our IV model specification for sub-samples defined by the following character-

istics of workers: i) three economic sectors (manufacturing, construction and services), ii)

four levels of workers’ qualifications (blue collar, white collar, manager and apprentice),

iii) gender, iv) nationality (Italian and foreign). As already described in Section 3, for each

of the relevant sub-samples respectively, we transform the data into municipality×month

averages. All the estimates are weighted by the number of workers in each municipality-

month cell.

Table 6 presents the estimates of the effect of air pollution in three different economic

sectors. We find that the impact of pollution on the probability of taking a sick leave is

the highest for workers belonging to the constructions sector. For this group of employees,

their penalty deriving from a one s.d. increase in PM10 amount to a 0.282 percentage

point increase in the average probability of taking a sick leave. This coefficient estimate

is twice as large as the effect found in the pooled individual level IV estimates. The

direction of the differential is also in line with the potential exposure of construction

workers to pollution, who are more likely to spend more time outdoors with respect to

other economic sectors. Similarly, workers of private services are found to suffer relatively

more from increase in PM10 concentrations, which is also likely to be driven by their

persistent and cumulative exposure to pollution in urban areas with larger emissions from

vehicles and heating systems.

It is important to highlight that the effect that we find is measured controlling for all

demographic and labor market characteristics of workers in each municipality × month

cell, hence accounting for differences in age and gender structure, qualification, contract

type and average experience. In fact, the probability of taking a sick leave is higher in

municipalities × months combinations where shares of older workers are higher, with the

differential being the strongest for the 61-65 age category. Additionally, a major presence

of blue collar workers is also correlated with a higher probability of sick leaves, while
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workers with managerial qualifications are associated with a lower probability of sick

leaves.

As for sick wage compensations, our coefficient estimates for manufacturing and construc-

tion sectors are almost double the ones of the individual level model, and slightly higher

with respect to the private sector. This might be due to the fact workers in construction

and manufacturing that are traditionally considered risky sectors, benefit from more gen-

erous social security allowances. On the other hand, the sick wage compensation might

be higher if workers spent more time home. Yet, with the data at hand we do not observe

the length of the leave, hence we cannot unambiguously interpret the coefficient estimate

on sick wage compensation in the direction of the intensive margin.

Subsequently, we focus on the differential impact of pollution across level of qualifications,

namely white collars, blue collars, managers and apprentices. In Table 7 we show that

that the effect of exposure to PM10 is disproportionally higher for blue-collar workers. A

one s.d. increase in PM10 results in an increase in the probability that workers take a sick

leave of 0.34 percentage points, which represents a 17% increase in the probability of a

sick leave. This result is in line with the type of duties that blue collar workers are more

likely to perform, as manual work is more prone to make them assimilate ambient impacts.

Conversely, white collar workers and managers are more likely to work indoors and hence

less exposed to environmental impacts. In fact, we find non statistically significant effects

for managers. The results relative to the probability of taking a sick leave are in line

with the estimates of the effect of PM10 on sick wage compensations. Specifically, among

blue collar workers, those most at risk, a differential in sick wage compensations at the

municipality × month level as a result of a one s.d. increase in PM10 amounts to 1.7

euro/worker/month. Conversely, among white collar workers, who face a relatively lower

exposure at any given level of concentration, the sick wage compensation due to a one

s.d. increase in PM10 is less than a half of the estimate for blue collar workers. In

case of apprentices, the difference between the estimate on the sick leave probability is

higher than that for white collar workers, and the respective estimates on compensations

highlight that apprentices face weak employment contracts that are are not adequately

compensated in relation to their work-related risks, including exposure to air pollution.

Table 8 presents the heterogeneous effects estimated in sub-samples aggregated by gender.

15



The estimates show that the impact of the increase in PM10 for females is twice as large

as that of male workers. Specifically, the increase in the probability of a sick leave for

female workers due to a one s.d. increase in PM10 is of 0.32 percentage point, compared

to 0.16 percentage point for male workers. Therefore, ceteris paribus, women face a risk

that more than double that faced by men. The fact that a higher pollution concentration

exerts a larger effect on Italian women is in line with the literature on socioeconomic gra-

dient in health inequalities among Italians. In a statistical meaning, labor characteristics

represent stronger predictors of several health related outcomes for women with respect to

men (Atella and Kopinska, 2014). Moreover, Pirani and Salvini (2015) shows that work

related factors are more harmful for self-assessed health among females in Italy. This

feature is common to Southern European countries, where women are more likely to work

under shorter-term contracts, occupy less qualified jobs and earn lower pays (Smith et al.,

2013). In line with these contextual findings, though much more susceptible of pollution

damages, women perceive similar sick wage compensations to men, amounting to 1.15

euro/worker/month due to a one s.d. increase in PM10.

When discussing the heterogeneous effects by gender it is worth discussing that they

might be driven also by specific gender patterns such as caregiving. Several studies cited

in Section 2 show that the effect of pollution on females is likely to take an indirect

channel, as they are more likely to assist vulnerable dependents, mainly children and the

elderly (Kim et al., 2017; Aragon et al., 2017). Regardless the reason, our results highlight

the existence of environmental inequality that has the potential to exacerbate the already

large gender gap existing in the labor market.

Finally, in Table 9 we present the results by nationality, distinguishing between Italian

and foreign citizenship workers. While the effects are fully statistically significant in both

categories considered, net of the full set of covariates which define several demographic

and labor characteristics of the workers considered, the effect that pollution exerts on the

the sick leave probability for foreign workers is greater. A one s.d. increase in PM10 causes

a 0.32 percentage point increase in the likelihood of taking a sick leave among foreigners,

and of 0.21 for Italians. Foreign workers receive also a higher sick wage compensation,

roughly twice that of Italians. This differential is likely to be driven by a major baseline

vulnerability that foreign nationality workers are likely to have.
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5.3 Aggregated social security expenditure attributable to pol-

lution

In order to offer a monetary quantification of the effect of PM10 on sick leaves, we carry

out a simple back-of-the-enveloped calculation where we exploit the coefficient estimates

obtained in the individual 2SLS model.7 The scope of this exercise is to evaluate the

expenditure attributable to excess PM10 concentrations, which delivers an idea of how

economically relevant is the issue of pollution for the labor market. Indeed, this health-

related excess expenditure borne by the social insurance system represents society’s costs.

We provide our health impact assessment under the assumption that there is a threshold

concentration above which health effects occur. The existence of possible non-linearity

or thresholds in the concentration-response functions is frequently advocated in epidemi-

ological studies (Daniels et al., 2000, among others) and it also represents a basis for the

pollution limits guidelines introduced by the Directive 2008/50 of the European Commis-

sion.

Our baseline scenario assumes a social security expenditure deriving from the actual PM10

concentration observed in the sample. We compare this scenario with two alternative

ones. In the first alternative scenario we assume that all municipalities comply with the

recommended PM10 concentration values provided by World Health Organization (WHO)

(20 µg/m), which implies that PM10 concentrations exceeding WHO limits are censored

to 20 µg/m. In the alternative second scenario instead we censor PM10 concentrations

to the annual national average. This procedure boils down to comparing the baseline

model predictions given actual PM10 levels, with two sets of predictions derived from the

alternative scenarios above described. For each scenario, we calculate excess expenditures

for both the analytical sample only (on average 1 million workers yearly) and for the entire

Italian workers population (approximately 26.6 million workers yearly). In the latter

case, we use official statistics from the Italian National Institute of Statistics (ISTAT) on
7It is worth noting that our 2SLS estimates deliver a Local Average Treatment Effect (LATE), in

which the ‘compliers’ are workers in windy cities. While using high frequency data there could be cities
where wind speed is almost zero in specific time intervals (days or hours) with no effect on pollution
dispersion, this is not the case in our setting because we never observe wind speed dropping to zero using
monthly wind data. Our analysis considers a period of six years during which all municipality-month
pairs are affected to some extent by wind, hence we can plausibly interpret our LATE as an average
treatment effect (ATE). With this assumption, we thus elaborate our back-of-the-envelope calculations
based on the full sample.
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province employment rates, which we apply to municipality specific population sizes in

order to define potentially affected pools of individuals.

Our calculations, shown in Table 10, unveil that the expenditure sustained by the social

security system attributable to excess PM10 in 2011 amounted to 4.3 million euro for the

sample considered in the analysis and, if scaled up to the entire population of Italian

workers, it amounted to 125 million euro. The temporal evolution of the expenditure is

different according to the threshold with respect to which we benchmark the baseline sce-

nario. Under the assumption that PM10 concentrations do not exceed the WHO standard,

the actual excess expenditure deriving from the baseline scenario increases with time as

a result of a consistent incremental trend in PM10 emissions in several Italian municipali-

ties. Conversely, if in our benchmark we cap PM10 concentrations at the national average,

we find a much more stable progression of expenditure attributable to excess PM10. In

fact, if we look at 2016, the in-sample expenditure computed with respect to the WHO

standard accounted to 5.3 million euro, while with respect to the national average, we

estimate an expenditure of 5.5 million euro. In a similar manner, the population level

expenditure amounts to 151 million euro if we cap PM10 at the WHO standard, and to

146 million euro according to the national average.

The total expenditure generated by excess air pollution during the period 2011-2016

amounts to nearly 27 million euro for the INPS sample and 755 million euro for the total

workers population, while if benchmarked to WHO standard, the excess expenditure

decreases, respectively, to nearly 17 and 475 million euro. Considering the total working

population, the incidence of these expenditures over the total social welfare expenditure

for sick leaves range from 2.8% to 4.5%, considering respectively national average and

WHO standards.8

5.4 Robustness checks

Reduced form - When examining the robustness of our results, an important concern

may come from the fact that wind speed may not satisfy the exclusion restriction if, in
8According to recent INPS estimates, the total social welfare expenditures for sick leaves amounted to

2.8 billion/year in 2018. Source: Senate Hearing held by the INPS President in September 2018, avail-
able at: http://www.senato.it/application/xmanager/projects/leg18/attachments/documento_
evento_procedura_commissione/files/000/000/291/Memorie_INPS.pdf
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strong windy days, the labor supply is reduced for factors other than pollution. This

may happen, for instance, if wind affects our the probability of sick leave through direct

mechanisms of health deterioration. To address this issue, we show the reduced form of

our 2SLS model. If wind is directly responsible of health deterioration, we would observe

a positive effect of wind on the outcome, with the probability of taking a sick leave in

days with strong wind being higher. The reduced form, showed in Table 5, points to an

opposite direction. The estimated coefficient is negative and strongly significant, signaling

that wind does not negatively affect the labor supply measured by sick leaves. It is worth

noting that our estimates of effects heterogeneity are weighted by the number of workers

in each municipality-month cell, accounting for overall labor supply.

IV monotonicy - If wind only moves pollution far away from where it is generated

instead of lowering PM10 concentration through dispersion, the monotonicity assumption

would be violated. Wind as a pollution mover has been already employed in several quasi-

experimental studies that combine wind direction and speed (Schlenker and Walker, 2015;

Deryugina et al., 2019; Anderson, 2019). A simple (though not conclusive) way to test if

the dispersion effect of wind prevails when considering multiple contiguous municipalities

is to divide the treatment effect of wind on pollution by quantiles. Figure 3 shows that

the marginal first stage effects of wind on PM10 concentration by decile of wind speed,

with the lowest decile representing the omitted category.9 The direction of the wind

effect is, on average, consistently negative, and it increases in higher wind speed deciles.

Importantly, the effect is statistically significant at 1% level also when we include non-

linear controls for precipitations and temperatures. Even though this test does account

for different effects in any cell of our sample but it only account for the mean in each

decile of the distribution, we show here that when considering a multitude of contiguous

municipalities, the association between wind speed and particle pollution concentration

is negative in each decile, i.e. the dispersion effect holds also at relatively low wind speed.
9We cannot test the dispersion effect for non-particle pollutants such as SO2, NO2 or O3 as these

pollutants were not fully available at the time of writing.
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6 Conclusions

This paper offers a large-scale causal analysis of the effect of exposure to air pollution

on labor supply by taking advantage of exogenous variation in concentrations induced by

wind. We carry out the analysis using administrative individual data collected by the

Italian social security institute (INPS) for the universe of Italian dependent employees in

the private sector.

Our estimates show that higher PM10 concentrations cause an increase in the probability

of taking a sick leave by workers, net of their individual time invariant characteristics. The

large dataset at hand allows us to analyze to what extent the impacts affect differently

specific subgroups of workers defined according to demographic and labor characteristics,

such as gender, nationality, economic sector and level of qualification. When comparing

the impact of PM10 on taking sick leaves and on the sick wage compensations, we find

that the effects are particularly pronounced for females and for foreign workers. Moreover,

within a selected set of labor market characteristics, we find that the impact of air quality

on sick leaves and associated monetary compensations are higher for blue collar workers

and for workers in the construction sector.

Our results deliver important indications for policy makers. The environmental inequality

resulting from a disproportionate impact of pollution on specific workers categories is likely

to reinforce typical socioeconomic gradients in health and in labor market participation.

In fact, the groups that are found to be the most penalized in our study, such as females,

foreigners and blue collar workers, are also the most disadvantaged groups on the labor

market, with shorter-term contracts and lower pays. This dual disadvantage gives rise to

a gap that deepens the relative vulnerability of these groups.

We compute the total social expenditure that, during the period in between 2011 and 2016,

was likely to be accumulated due to sick leaves resulting from excessive PM10 concentra-

tions with respect to the national average. These annual costs amount to approximately

125 million euro on average, with a total cost of 755 million euro accumulated over the

period considered in our analysis. This total cost corresponds to about 4.5% of the total

INPS expenditures in sick leave compensations dispensed during the same period.

Among the limitations of this study we highlight that it would be interesting to address
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absenteeism in more nuanced dimensions. Despite available for the universe of private

workers, the measures we observe are monthly indicators of sick leaves without observing

a medical diagnoses and the length of the leave. With more detailed information, it

would be possible to understand the effect of PM10 on the complexity of such episodes.

Moreover, as in the present setting we are not able to properly address potential impacts

from co-emitted pollutants, the effects that we attribute to PM10 might represent the

effect of a combination of pollutants. Yet, we can interpret our results on PM10 as a good

proxy for overall air quality.
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Figures

Figure 1: Average PM10 Concentration Level in Italian Municipalities between 2011 and
2016.
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Notes: The figure shows the geographical distribution of average PM10 concentration levels between 2011
and 2016 in each Italian municipality. The figure is based on own elaborations using CAMS PM10 data.
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Figure 2: Total Number of High PM10 Days in Italian Municipalities between 2011 and
2016.
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Notes: The figure shows the geographical distribution of total number of days between 2011 and 2016
with PM10 concentration levels above the daily recommended limit of 50 µg/m3 set by the European
Commission. The figure is based on own elaborations using CAMS PM10 data.
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Figure 3: First Stage Effects of Wind Speed on PM10 Level, at Different Speed Deciles.
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Note: confidence intervals are at 95%. Excluded category is windspeed at the first decile.

Notes: The graph shows the point estimates of the effect of wind speed on PM10 concentra-
tions at different levels of wind speed deciles. Red markers show the effect of wind without
controlling for rain and temperatures, while blue markers show the effect with full weather con-
trols as in Table 2. The graph is obtained with the Stata command coeffplot by Ben Jann
(http://repec.sowi.unibe.ch/stata/coefplot/index.html).
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Tables

Table 1: Summary Statistics of Relevant Variables at Month and Municipality Level.

Variable Mean Standard deviation Minimum Maximum
Demographic variables (shares)

Females 0.39 0.15 0 1
Foreigners 0.13 0.11 0 1
Age 16-20 0.02 0.03 0 1
Age 21-25 0.09 0.06 0 1
Age 26-30 0.12 0.06 0 1
Age 31-35 0.14 0.06 0 1
Age 36-40 0.15 0.06 0 1
Age 41-45 0.16 0.07 0 1
Age 46-50 0.14 0.07 0 1
Age 51-55 0.11 0.07 0 1
Age 56-60 0.05 0.05 0 1
Age 61-65 0.01 0.02 0 1

Labor variables
Share of sick days 0.02 0.02 0 1
Sick days compensation (euro) 10.79 17.52 0 2058.00
Wage (euro) 1680.18 504.46 7.00 8432.00
Total workers 1355.48 11131.35 1.00 748054.00
Total sick days 28.71 221.65 0 19628.00
Share of part-time contracts 0.15 0.08 0 1
Share of Manufacturing (1039) 0.29 0.25 0 1
Share of Construction (4145) 0.13 0.15 0 1
Share of Private services (4582) 0.38 0.25 0 1
Share of Public services (8493) 0.06 0.11 0 1
Share of Blue collar workers 0.67 0.14 0 1
Share of White collar workers 0.26 0.13 0 1
Share of Managers 0.01 0.02 0 0
Share of Apprentice workers 0.06 0.06 0 1

Pollution and weather variables
PM10 (µg/m3) 17.12 6.14 3.44 55.37
Wind speed (m/s) 2.49 1.00 0.46 10.46
Temperature (min) 9.93 6.72 -15.70 26.12
Temperature (mean) 14.37 7.16 -9.66 30.00
Temperature (max) 18.80 7.75 -6.02 36.05
Total precipitations (mm) 72.19 64.66 0 689.80
Notes: The statistics are derived from an original sample of 440 million observations referring to workers observed
between 2011-2016, aged between 18-65, with at least 8 weeks worked in each year, whose earnings falling inside the first
and 99th percentile of yearly earnings distributions. Based on this sample a municipality × month sample is constructed
corresponding to 510,551 observations.
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Table 2: OLS Estimates of the Effect of PM10 on Labor Supply and Sick Wage.

(1) (2)

Sick Leave Sick Wage
PM10 0.00004*** 0.01636***

(0.00001) (0.00568)
Obs. 66,402,554 66,402,554
Worker FEs YES YES
Year-month FEs YES YES

Notes: Individual controls include age classes and
part-time. Weather controls include bins of precipi-
tations, minimum, average and maximum tempera-
tures. Standard errors, in parentheses, are clustered
on municipalities.

Table 3: First Stage Estimates of the Effect of Wind Speed on PM10 Concentration.

(1)
PM10

Wind speed -0.72326***
(0.09293)

Obs. 66,402,554
Worker FEs YES
Year-month FEs YES
Notes: Individual controls include age
classes and part-time. Weather controls in-
clude bins of precipitations, minimum, av-
erage and maximum temperatures. Stan-
dard errors, in parentheses, are clustered
on municipalities.

31



Table 4: IV Estimates of the Effect of PM10 on Labor Supply and Compensation Wage.

(1) (2)

Sick Leave Sick Wage
PM10 0.00024*** 0.13630**

(0.00009) (0.05842)
Obs. 66,402,554 66,402,554
Worker FEs YES YES
Year-month FEs YES YES
F-statistics: 60.58 60.58

Notes: Individual controls include age classes and
part-time. Weather controls include bins of precipi-
tations, minimum, average and maximum tempera-
tures. Standard errors, in parentheses, are clustered
on municipalities.

Table 5: Reduced Form Estimates of the Effect of Wind Speed on Labor Supply and
Compensation Wage.

(1) (2)

Sick Leave Sick Wage
Wind speed -0.00018*** -0.09858**

(0.00007) (0.04262)
Obs. 66,402,554 66,402,554
Worker FEs YES YES
Year-month FEs YES YES

Notes: Individual controls include age classes and
part-time. Weather controls include bins of precipi-
tations, minimum, average and maximum tempera-
tures. Standard errors, in parentheses, are clustered
on municipalities.
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Table 6: IV Estimates of the Effect of PM10 on Sick Leave and Sick Wage by Economic
Sector

Manufacturing Construction Private services
(1) (2) (3) (4) (5) (6)

Sick Leave Sick Wage Sick Leave Sick Wage Sick Leave Sick Wage

PM10 0.00032*** 0.24990*** 0.00046*** 0.24510*** 0.00040*** 0.22475***
(0.00008) (0.07156) (0.00012) (0.09358) (0.00007) (0.03541)

Sex 0.00511*** -0.71532 -0.01934*** -16.18329*** 0.00949*** 2.42727***
(0.00099) (0.67227) (0.00267) (2.77034) (0.00139) (0.63551)

Foreign -0.00637*** -3.54715*** -0.00583*** -4.30794*** 0.00879*** 3.68269***
(0.00173) (1.29212) (0.00107) (1.25224) (0.00138) (0.64667)

Part-time -0.02521*** -21.33344*** -0.02858*** -28.63835*** 0.01476*** -3.09679***
(0.00218) (1.62500) (0.00318) (2.62018) (0.00137) (0.80131)

Age 21-25 -0.00047 -1.97876 0.00621* 6.04615* -0.01105*** -2.81127
(0.00456) (3.07579) (0.00360) (3.30848) (0.00401) (2.15103)

Age 26-30 0.00045 -1.76280 0.00623* 5.67293 -0.00524 -0.21240
(0.00459) (3.27400) (0.00370) (3.49825) (0.00409) (2.19815)

Age 31-35 -0.00115 -3.76543 0.01023** 8.10750** -0.00137 2.01081
(0.00439) (3.01755) (0.00397) (3.52901) (0.00355) (1.93863)

Age 36-40 0.00522 1.34645 0.01333*** 12.09027*** 0.01446*** 9.99774***
(0.00447) (3.17160) (0.00396) (3.69164) (0.00383) (1.99593)

Age 41-45 0.01256*** 7.67465** 0.01628*** 13.73782*** 0.01750*** 11.74526***
(0.00476) (3.38200) (0.00387) (3.55714) (0.00389) (2.14431)

Age 46-50 0.00791* 4.62782 0.02290*** 19.04206*** 0.01938*** 12.06403***
(0.00472) (3.36128) (0.00381) (3.78678) (0.00401) (2.01594)

Age 51-55 0.02079*** 13.78584*** 0.03753*** 32.18965*** 0.01136*** 9.51373***
(0.00463) (3.10327) (0.00382) (3.54291) (0.00369) (2.23064)

Age 56-60 0.02973*** 20.65168*** 0.05581*** 49.50753*** 0.00358 5.07421**
(0.00448) (3.59281) (0.00426) (4.02555) (0.00402) (2.45963)

Age 61-65 0.03759*** 18.95692*** 0.06744*** 56.15392*** -0.00259 -3.72195
(0.00737) (5.38579) (0.00708) (6.65375) (0.00630) (3.63013)

Blue collars 0.03594*** 16.60604*** 0.02732 17.48013 0.02349*** 8.81201***
(0.00543) (3.47669) (0.01963) (15.99386) (0.00331) (1.73589)

White collars -0.00750 -6.15011 0.00176 3.32806 0.01741*** 7.08131***
(0.00536) (3.77202) (0.01972) (16.10746) (0.00340) (1.82810)

Managers 0.00308 -1.52633 -0.03181 -4.43287 -0.03974*** -21.63039***
(0.00594) (5.39056) (0.02260) (25.58602) (0.00678) (3.90785)

Apprentices 0.00815 0.22143 0.02725 14.67262 0.00732 4.05532
(0.00635) (4.23487) (0.01965) (16.00375) (0.00499) (2.76686)

Experience 0.00012*** 0.06966*** 0.00007*** 0.04446*** 0.00008*** 0.03567***
(0.00000) (0.00321) (0.00000) (0.00422) (0.00000) (0.00208)

Obs. 434,595 434,595 442,018 442,018 485,401 485,401
Municipality FEs YES YES YES YES YES YES
Year-month FEs YES YES YES YES YES YES
Province × year-month FEs YES YES YES YES YES YES
F-statistics 154.6 154.6 111.3 111.3 78.71 78.71
Notes: All controls are calculated as averages in each municipality× year-month cells. Additional controls (not showed in the table) include total precipitations
and bins of temperatures. Estimates are weighted by number of workers in each municipality-month cell. Standard errors, in parentheses, are clustered on
municipalities.
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Table 7: IV Estimates of the Effect of PM10 on Sick Leave and Sick Wage by Qualification

White collar Blue collar Managers Apprentice
(1) (2) (3) (4) (5) (6) (7) (8)

Sick Leave Sick Wage Sick Leave Sick Wage Sick Leave Sick Wage Sick Leave Sick Wage

PM10 0.00024*** 0.12427*** 0.00055*** 0.28166*** 0.00005 0.01481 0.00034*** 0.07958**
(0.00005) (0.02744) (0.00009) (0.06074) (0.00004) (0.04759) (0.00007) (0.03759)

Sex 0.00520*** 3.04443*** 0.00989*** 1.17345 0.00011 -0.38792 -0.00246*** -1.35139***
(0.00084) (0.48595) (0.00154) (0.86666) (0.00030) (0.43970) (0.00069) (0.43197)

Foreign 0.04508*** 22.95262*** -0.00476*** -2.49777** 0.00449** 3.17274 -0.00047 -0.90716**
(0.00327) (1.90548) (0.00180) (1.06865) (0.00193) (2.26092) (0.00089) (0.45979)

Part-time 0.02127*** 1.62516* -0.00909*** -16.41929*** 0.00519*** -1.03026 0.00133 -2.80811***
(0.00196) (0.88921) (0.00202) (1.24740) (0.00134) (1.66489) (0.00125) (0.70948)

Age 21-25 0.00158 2.09812 -0.03163*** -22.31787*** 0.00430 13.50243 -0.00170 1.53930***
(0.00675) (3.41540) (0.00606) (3.59576) (0.01573) (15.48279) (0.00131) (0.48814)

Age 26-30 -0.01509** -6.41481** -0.04485*** -28.84102*** 0.01419 31.56929*** -0.00366*** 0.99900
(0.00659) (3.22541) (0.00617) (3.76646) (0.01231) (10.54907) (0.00137) (0.72291)

Age 31-35 -0.01685*** -6.57358** -0.03898*** -28.14742*** 0.01389 29.86513*** 0.00204 3.49567***
(0.00624) (3.20353) (0.00612) (3.75190) (0.01218) (10.08915) (0.00170) (0.94864)

Age 36-40 -0.01196** -4.79056 -0.01807*** -14.82377*** 0.01098 27.37072*** -0.00944 1.45465
(0.00581) (3.08003) (0.00600) (3.53279) (0.01212) (10.04508) (0.00753) (4.49650)

Age 41-45 -0.00780 -1.52000 -0.01457** -12.62272*** 0.01015 26.96510*** 0.00045 6.95685
(0.00573) (2.97816) (0.00577) (3.56697) (0.01209) (10.03593) (0.00805) (4.97326)

Age 46-50 -0.00864 -1.83594 -0.01506*** -10.94461*** 0.00974 25.69908** 0.00073 7.23025
(0.00580) (3.07451) (0.00573) (3.59180) (0.01209) (9.99075) (0.00843) (5.46390)

Age 51-55 -0.01120** -2.74433 -0.00165 -3.90355 0.00873 24.82863** -0.00539 4.62053
(0.00557) (2.95641) (0.00586) (3.48394) (0.01208) (9.97660) (0.01005) (6.22994)

Age 56-60 -0.01106** -2.09150 0.01365* 7.03611 0.00814 23.99987** -0.01896 -14.19854**
(0.00533) (2.87145) (0.00732) (4.33570) (0.01207) (10.05590) (0.01161) (5.77800)

Age 61-65 -0.00891 1.98748 -0.00351 -15.30825** 0.00753 22.45903** -0.02619 -10.33824
(0.00712) (4.29756) (0.01047) (6.04689) (0.01223) (10.29226) (0.01621) (9.07428)

Manufacturing -0.00639*** -4.06253*** 0.00348*** 1.69722*** -0.00205*** -3.33475*** 0.00068 0.09053
(0.00041) (0.27251) (0.00080) (0.43863) (0.00024) (0.38114) (0.00077) (0.50731)

Construction -0.01085*** -5.92327*** 0.00673*** 7.99312*** -0.00033 0.23228 0.00572*** 4.35962***
(0.00092) (0.49722) (0.00127) (0.83066) (0.00091) (1.62131) (0.00097) (0.58400)

Private Services 0.00416*** 2.19188*** 0.00182** 1.10451** 0.00076*** 0.65821* -0.00169** -0.72416
(0.00041) (0.29977) (0.00092) (0.51054) (0.00023) (0.37105) (0.00076) (0.44827)

Experience 0.00006*** 0.03037*** 0.00012*** 0.06392*** -0.00003*** -0.06154*** 0.00001*** 0.00113
(0.00001) (0.00274) (0.00000) (0.00294) (0.00000) (0.00823) (0.00000) (0.00204)

Obs. 501,626 501,626 504,799 504,799 345,169 345,169 451,912 451,912
Municipality FEs YES YES YES YES YES YES YES YES
Year-month FEs YES YES YES YES YES YES YES YES
Province × year-month FEs YES YES YES YES YES YES YES YES
F-statistics: 68.80 68.80 112.2 112.2 51.19 51.19 111.1 111.1
Notes: All controls are calculated as averages in each municipality× year-month cells. Additional controls (not showed in the table) include total precipitations and bins of temperatures. Estimates
are weighted by number of workers in each municipality-month cell. Standard errors, in parentheses, are clustered on municipalities.
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Table 8: IV Estimates of the Effect of PM10 on Sick Leave and Sick Wage by Sex

Females Males
(1) (2) (3) (4)

Sick Leave Wage Sick Sick Leave Wage Sick

PM10 0.00052*** 0.19957*** 0.00026*** 0.18695***
(0.00008) (0.03667) (0.00007) (0.04211)

Foreign 0.00601*** 1.96910* -0.00087 -0.65108
(0.00202) (1.01686) (0.00153) (0.92952)

Part-time -0.00149 -11.45007*** -0.00724*** -15.04060***
(0.00168) (0.85193) (0.00198) (1.47544)

Age 21-25 -0.01474** -5.43431** -0.00043 -2.23076
(0.00578) (2.41776) (0.00419) (3.35381)

Age 26-30 -0.01898*** -8.54151*** 0.00015 -3.98976
(0.00538) (2.26286) (0.00432) (3.03545)

Age 31-35 -0.01729*** -8.57053*** -0.00270 -6.58295**
(0.00498) (2.27364) (0.00421) (3.14374)

Age 36-40 -0.00223 -0.42222 0.00412 -0.18822
(0.00510) (2.25652) (0.00430) (3.22403)

Age 41-45 0.00132 1.71314 0.01194*** 4.59844
(0.00492) (2.20056) (0.00436) (3.19027)

Age 46-50 0.00357 1.93763 0.01215*** 5.41540*
(0.00501) (2.29475) (0.00419) (3.07938)

Age 51-55 0.00653 4.13004* 0.01878*** 11.46463***
(0.00480) (2.34638) (0.00400) (3.28394)

Age 56-60 0.00531 2.75441 0.02887*** 21.06089***
(0.00568) (2.59835) (0.00435) (3.19799)

Age 61-65 -0.00492 -10.13675** 0.02832*** 13.97389***
(0.00807) (4.00635) (0.00750) (5.26634)

Manufacturing 0.00010 0.55092 0.00137** 0.16435
(0.00081) (0.41699) (0.00057) (0.34930)

Construction -0.03682*** -16.21983*** 0.00818*** 8.15697***
(0.00326) (1.49961) (0.00086) (0.62099)

Private Services 0.00514*** 3.07048*** -0.00014 0.09423
(0.00073) (0.39224) (0.00061) (0.42164)

Blue Collars 0.02529*** 9.86120*** 0.02035*** 7.99889***
(0.00679) (3.57501) (0.00341) (1.93150)

White Collars 0.00790 3.47238 0.00226 -2.23086
(0.00678) (3.51789) (0.00348) (1.95860)

Managers -0.04857*** -25.41940*** -0.02430*** -17.81829***
(0.00884) (4.62558) (0.00546) (3.50825)

Apprentices -0.00746 -5.51996 0.00728* -2.78736
(0.00870) (4.54863) (0.00427) (2.91554)

Experience 0.00013*** 0.06005*** 0.00009*** 0.05124***
(0.00001) (0.00257) (0.00000) (0.00341)

Obs. 500,391 500,391 507,511 507,511
Municipality FEs YES YES YES YES
Year-month FEs YES YES YES YES
Province × year-month FEs YES YES YES YES
F-statistics: 100.6 100.6 96.93 96.93
Notes: All controls are calculated as averages in each municipality× year-month cells. Additional controls (not showed
in the table) include total precipitations and bins of temperatures. Estimates are weighted by number of workers in each
municipality-month cell. Standard errors, in parentheses, are clustered on municipalities.

35



Table 9: IV Estimates of the Effect of PM10 on Sick Leave and Sick Wage by Nationality

Italian Foreign
(1) (2) (3) (4)

Sick Leave Sick Wage Sick Leave Sick Wage

PM10 0.00034*** 0.19327*** 0.00053*** 0.37879***
(0.00006) (0.03599) (0.00009) (0.07807)

Sex 0.00868*** 1.76184** 0.01305*** 4.03869***
(0.00123) (0.70302) (0.00124) (0.81609)

Part-time 0.00359* -9.69837*** -0.02406*** -15.09818***
(0.00187) (1.09996) (0.00166) (1.40820)

Age 21-25 -0.00679 -2.04066 -0.00062 -2.40129
(0.00512) (3.12933) (0.00303) (2.29891)

Age 26-30 -0.00873* -5.75499* -0.00392 -6.03141**
(0.00511) (3.10850) (0.00290) (2.54231)

Age 31-35 -0.00951** -8.17863*** -0.00419 -4.54894*
(0.00454) (3.06569) (0.00301) (2.52509)

Age 36-40 0.00285 0.49778 0.00176 -0.93515
(0.00483) (3.10978) (0.00321) (2.61704)

Age 41-45 0.01010** 4.77108 0.00586* 3.39313
(0.00479) (3.02290) (0.00338) (2.58792)

Age 46-50 0.00552 3.35245 0.00867** 5.37931**
(0.00477) (2.99047) (0.00346) (2.39201)

Age 51-55 0.01420*** 8.92365*** 0.01869*** 9.71331***
(0.00444) (3.26827) (0.00400) (3.07282)

Age 56-60 0.02409*** 15.95279*** 0.02365*** 15.13065***
(0.00493) (2.98678) (0.00476) (3.68530)

Age 61-65 0.00703 -0.20094 0.04473*** 23.92821***
(0.00853) (5.49615) (0.00844) (8.13962)

Manufacturing 0.00200*** 0.44017 0.00082 -0.80004
(0.00056) (0.32494) (0.00081) (0.60746)

Construction 0.00715*** 7.30750*** 0.00430*** 4.24543***
(0.00112) (0.73490) (0.00101) (0.77606)

Private Services 0.00208*** 1.44124*** 0.00035 -0.82296
(0.00059) (0.35573) (0.00078) (0.71769)

Blue Collars 0.02471*** 9.68382*** 0.02168*** 6.92798**
(0.00446) (2.52769) (0.00511) (3.15194)

White Collars 0.00940** 2.13761 0.00998** 5.80586*
(0.00447) (2.54763) (0.00486) (3.24672)

Managers -0.02839*** -19.01491*** -0.01310 -20.43491
(0.00689) (3.84685) (0.01027) (48.86088)

Apprentices -0.00094 -5.22841 0.01782*** 5.77339
(0.00627) (3.94314) (0.00551) (3.70061)

Experience 0.00010*** 0.05528*** 0.00011*** 0.05166***
(0.00000) (0.00338) (0.00000) (0.00439)

Obs. 510,516 510,516 473,045 473,045
Municipality FEs YES YES YES YES
Year-month FEs YES YES YES YES
Province × year-month FEs YES YES YES YES
F-statistics: 98.12 98.12 124.2 124.2
Notes: All controls are calculated as averages in each municipality× year-month cells. Additional controls (not showed
in the table) include total precipitations and bins of temperatures. Estimates are weighted by number of workers in each
municipality-month cell. Standard errors, in parentheses, are clustered on municipalities.
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Table 10: Total Annual Costs of PM10 (in million Euro).

Year INPS sample Italian employees
Baseline vs. Baseline vs.. Baseline vs. Baseline vs.
National WHO standard National WHO standard
average (20 µg/m3) average (20 µg/m3)

2011 4.31 2.20 125.41 65.39
2012 4.04 1.35 115.30 39.92
2013 4.20 2.43 118.46 70.78
2014 4.86 2.59 127.42 69.70
2015 4.33 2.69 121.57 77.30
2016 5.31 5.49 146.41 151.19

Notes: INPS sample refers to INPS data selected according to criteria enlisted in
the data sample, and amounting to 1 million workers on average yearly. Italian
employees are constructed by taking the employment shares with respect to munic-
ipality population sizes, as defined according to ISTAT statistics. National PM10
average refers to the all-period CAMS data average concentrations.
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Appendix

Additional Tables

Table A1: IV Estimates of the Effect of PM10 with Standard Errors Clustered on
Provinces.

(1) (2)

Sick Leave Sick Wage
PM10 0.00024** 0.13629*

(0.00011) (0.07467)
Obs. 66,402,425 66,402,425
Worker FEs YES YES
Year-month FEs YES YES
F-statistics: 30.35 30.35

Notes: Individual controls include age classes and
part-time. Weather controls include bins of precip-
itations, minimum, average and maximum temper-
atures. Standard errors, in parentheses, are clus-
tered on provinces.

Table A2: First Stage Estimates With Standard Errors Clustered on Provinces

(1)

PM10
Wind speed -0.72326***

(0.13128)
Obs. 66,402,425
Worker FEs YES
Year-month FEs YES

Notes: Individual controls include
age classes and part-time. Weather
controls include bins of precipita-
tions, minimum, average and max-
imum temperatures. Standard er-
rors, in parentheses, are clustered on
provinces.
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