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Abstract

Leveraging the geographic dimension of a large administrative panel on employer-
employee contracts, we study the impact of robot adoption on wage inequality through
changes in worker-firm assortativity. Using recently developed methods to correctly
and robustly estimate worker and firm unobserved characteristics, we find that robot
adoption increases wage inequality by fostering both horizontal and vertical task
specialization across firms. In local economies where robot penetration has been more
pronounced, workers performing similar tasks have disproportionately clustered in the
same firms (‘segregation’). Moreover, such clustering has been characterized by the
concentration of higher earners performing more complex tasks in firms paying higher
wages (‘sorting’). These firms are more productive and poach more aggressively. We ra-
tionalize these findings through a simple extension of a well-established class of models
with two-sided heterogeneity, on-the-job search, rent sharing and employee poaching.
We conclude that our empirical findings reveal the presence of both ‘routine-biased
technological change’ (RBTC), whereby new technology decreases the relative demand
for workers in traditional routine tasks, and ‘core-biased technological change’ (CBTC),
whereby new technology requires workers with specialized knowledge independently of
their tasks being more or less routine intensive.
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Inequality: Evidence from Administrative Panel Data
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Abstract

Sfruttando la dimensione geografica di un ricco dataset panel amministrativo, la
cui unità di osservazione è il contratto impiegato - datore di lavoro, studiamo
l’impatto che l’adozione di robot ha sulla disuguaglianza salariale tramite cambiamenti
nell’allocazione tra lavoratori e imprese. Usiamo metodi sviluppati recentemente per
stimare in maniera corretta e robusta l’eterogeneità inosservata di lavoratori e imprese,
trovando che l’adozione di robot aumenta la disuguaglianza salariale favorendo la
specializzazione di attività tra aziende sia lungo la dimensione orizzontale sia verticale.
Nelle economie locali dove la penetrazione di robot è maggiore, lavoratori che svolgono
attività simili sono impiegati in maniera più che proporzionale nelle stesse aziende
(’segregazione’). Tale clusterizzazione si caratterizza inoltre da una concentrazione
dei lavoratori che guadagnano di più e svolgono attività più complesse in aziende che
pagano salari più alti (’sorting’). Queste aziende sono più produttive e più competitive
nell’assumere impiegati in altre imprese. Razionalizziamo i nostri risultati con una
semplice estensione della classe di modelli con duplice eterogeneità, ricerca di lavoro
on-the-job, condivisione di rendite e competizione nella domanda di lavoro. Arriviamo
alla conclusione che i nostri risultati empirici rivelano la presenza sia di ‘routine-biased
technological change’ (RBTC), per cui tecnologie nuove diminuiscono la domanda
relativa di lavoratori impiegati in attività tradizionali di routine, sia di ‘core-biased
technological change’ (CBTC), secondo cui nuove tecnologie richiedono lavoratori con
conoscenze specifiche, indipendentemente dal contenuto tradizionale di routine delle
loro attività.

Keywords: Bias di cambiamento tecnologico per attività core, allocazione, disug-
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1. Introduction

Wage inequality has grown significantly over the past decades in all industrialized countries.

There is consensus that part of this growth is due to technological change. Following the rise

in college enrollment (Katz and Murphy 1992) have popularized the view that, by assigning

large premia to education, ‘skill-biased technological change’ (SBTC) raises wage inequality

via vertical skill acquisition. Previous waves of technology improvements, however, did not

produce the same effects, prompting to ask what is special about the current wave. Some

authors (see (Autor, Levy and Murnane 2003) among others) argue that, beyond vertical skill

acquisition, recent technology adoption, mostly in the form of automation and digitalization,

increases wage inequality by changing the relative market values of different tasks. While

with SBTC new technology complements workers with high skills, with ‘routine-biased

technological change’ (RBTC) new technology decreases demand for workers in traditional

routine tasks while creating additional demand for workers in new complex tasks.

We push these ideas a step further by arguing that, as automation and digitalization

intensify, the efficient completion of related tasks increasingly requires human operators

with specialized knowledge of automated systems involving specific algorithms, software and

machines. The associated growing demand for specialized knowledge is conducive to a form

of workers’ specialization that increasingly matters above and beyond what would be needed

by the high skill content of tasks or their routine intensity. In this respect, by fostering

knowledge differentiation, automation and digitalization require from workers not only vertical

but also horizontal skill specialization. (Faia, Laffitte, Mayer and Ottaviano 2020)call this

phenomenon ‘core-biased technological change’ (CBTC), whereby new technology requires

workers with specialized knowledge (‘core competencies’) independently of them being high

or low skilled, or their tasks being more or less routine intensive.

An important specific implication of CBTC is that automation and digitalization should

raise the assortativity between workers’ specialized skills and firms’ specific tasks with far-

reaching ramifications for the evolution of the within- and between-firm components of wage

inequality. The aim of the present paper is to investigate that implication and its ramifications

focusing on robot adoption, which entails both automation and digitalization, namely the
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automation of tasks and the acquisition of softwares to operate the corresponding robots.

In doing so, we leverage a unique confidential dataset covering the universe of contracts

between firms and workers across Italian local economies (‘provinces’) from 1983 to 2020,

enriched with information on robot acquisition from the International Federation of Robotics

(IFR). Italy is an interesting case. It is a G7 country with a large industrial sector that has

generated an average value added of 390.51 billion U.S. dollar over the period 1990-2020. In

2020 the manufacturing value added of Italy was more than four times higher than the world

average (408.41 vs 94.83 billion U.S. dollars).1 Moreover, new technology adoption plays a

crucial role for Italian industries. On a scale from 0 to 1, the World Bank digital adoption

index for Italy equals 0.76 overall and 0.74 for business, largely above the corresponding

world averages of 0.31 and 0.36 respectively.2

After introducing the dataset, we start our investigation by documenting the evolution

of wage inequality in Italy during the period of observation. All measures we use reveal a

sizeable increase in wage inequality: the 90-10 percentile ratio, the 75-25 percentile ratio

and the variance all go up, by roughly 10%, 20% and 30% respectively. We then examine a

simple wage variance decomposition across firms, occupations (‘tasks’) and sectors. We find

that the between-firm component is more important than the within-firm component, with a

cumulative increase of the former almost five times larger than the latter. Further refining

the analysis, we also find that the between-firm, within-sector and within-task component is

the single most important component of overall wage variance. Accordingly, for a given task

in a given sector, the main driver of wage inequality is match heterogeneity for the same task

across firms within the same sector.

Clearly, these findings do not necessarily imply an increase in the assortativity between

workers’ specialized skills and firms’ specific tasks as the evolution of match heterogeneity

can be driven by firm characteristics, worker characteristics or their combination. Formally,

after controlling for observables, between-firm wage inequality can be driven by the variance

of unobserved firm characteristics, the variance of the average characteristics of the firm’s

workforce or the correlation between unobserved firm and worker characteristics (‘sorting’).

1 See: https://www.theglobaleconomy.com/rankings/industry value added.
2 See: https://www.worldbank.org/en/publication/wdr2016/Digital-Adoption-Index.
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Moreover, the increase in assortativity during the period of observation may not be necessarily

due to technological change.

Our empirical strategy consists of two stages involving the estimation of how sorting evolves

through time and the assessment of the causal effect of robot adoption on that evolution.

Specifically, in the first stage we discuss the thorny problems one faces to separately identify

sorting from firm and worker characteristics in matched employer-employee wage data,

and propose a solution based on (Bonhomme, Lamadon and Manresa 2019). Traditional

reduced-form estimation with additive firm and worker fixed effects, albeit very versatile

((Abowd, Kramarz and Margolis 1999), (Card, Cardoso, Heining and Kline 2018)), neglects

complementarity-induced non-linearities, and it is often plagued by an identification bias

as well as by an incidental parameter bias, which arises whenever many parameters are

estimated with relatively few observations ((Andrews, Gill, Schank and Upward 2012)). This

is particularly relevant in our case. The estimation of firm fixed effects requires the same

firm to employ different workers, which is typically what we see in the data. Analogously,

the estimation of worker fixed effects requires the same worker to work for different firms,

which however happens only to workers who change employer (‘movers’). As the number of

observations is given by the sum of the numbers of firms and workers (which are themselves

equal to the numbers of firm and worker fixed effects) plus the number of movers (who are

typically relatively few), the incidental parameter bias is often referred to as the ‘low mover

bias’ associated with lack of power in the estimation of worker fixed effects.3

To solve these problems, we follow the approach proposed by (Bonhomme et al. 2019)

to identify and estimate earnings distributions and worker composition on matched panel

data allowing for two-sided worker-firm unobserved heterogeneity. To reduce the number

of estimating parameters, they suggest to proceed in two steps. Firms are first partitioned

into ‘classes’ by a dimension reduction method based on a machine learning (‘k-means’)

algorithm. Estimation is then performed with firm class fixed effects rather than individual

firm fixed effects. As for workers, their heterogeneity is captured through random fixed

effects after reducing its dimensionality by approximating the workers’ distribution via

3 See (Eeckhout and Kircher 2011) for a discussion of identification in assortative matching environments,
and (Andrews et al. 2012) for a test showing the sensitivity of two-way fixed effects estimates to the share
of movers.
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a finite support population density. The result is a finite-mixture specification that is

estimated by maximum likelihood including interacted firm-class fixed effects to account

for potential complementarity-induced non-linearities. This specification is used to collapse

worker heterogeneity in a limited number of probabilistic ‘types’.

An extension we make to (Bonhomme et al. 2019) is due to the fact that, in order to

study the effects of technological change on sorting, we need time varying estimates of the

correlation between unobserved firm and worker characteristics, which themselves call for

time varying estimates of those characteristics. This estimation requires a time window that

is, on the one hand, wide enough to accommodate a large enough number of movers and, on

the other hand, narrow enough to consider unobserved firm and worker characteristics as

reasonably stable. Relying on Swedish matched employer-employee panel data from 2002 to

2004, (Bonhomme et al. 2019) use a two-year window for their static model and a four-year

window for their dynamic model. In the same vein, exploiting the longer time series dimension

of our Italian data from 1983 to 2020, we obtain time varying estimates of unobserved firm

and worker characteristics re-estimating them every second year over partially overlapping

4-year intervals.

Another extension we make to (Bonhomme et al. 2019) stems from the fact that, in order

to estimate sorting in local economies, unobserved firm and worker characteristics have to

be themselves estimated at the local level. Assigning firm classes to local economies by the

addresses of the firms they include is relatively straightforward as the k-means algorithm

provides an exact partition of firms into such classes. This is not the case, however, for worker

types as the same does not hold for the probabilistic types obtained from the finite mixture

specification. We tackle this issue by computing the probabilities that workers belong to

the different worker types and associate them with their highest probability type. We then

assign worker types to provinces by the addresses of the workers they include.

In the second stage of our empirical strategy, we regress our time varying sorting estimates

on the exogenous variation of automation at the local level. This is captured through

a shift-share instrument à la (Acemoglu and Restrepo 2020), which imputes the sectoral

changes in the IFR stock of robots over value added to a local economy based on its sectoral
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employment shares. The instruments is computed every two years to match the frequency at

which sorting is estimated. The sectoral changes in the stock of robots over value added are

constructed by averaging across the US, Japan and several European countries (other than

Italy).

In the first stage, we find that the correlation between unobserved firm-class and worker-

type characteristics is positive and accounts for a relevant part of the wage variance across

matched firm-class and worker-type pairs. This part, though smaller than the part explained

by unobserved worker-type characteristics, is larger than the part explained by unobserved

firm-class characteristics. When we decompose the wage variance within and between firm

classes, we also find evidence of a tendency of different worker types to appear in different

firm classes. Hence, we observe not only ‘sorting’ as superior (inferior) firm classes tend

to match with superior (inferior) worker types, but also ‘segregation’ as different worker

types tend to cluster in different firm classes. To shed light on the underlying mechanism,

we correlate the firm classes with observable firm characteristics and find that superior firm

classes are associated with higher value added per worker (‘labor productivity’) and are

located in the most developed local economies. We also correlate the worker types with

one-digit ISCO occupational categories ordered from the least to the most intensive in routine

tasks, with higher routine intensity signalling lower task complexity. We find that superior

worker types are associated with more complex tasks. We interpret this finding as evidence

of vertical task specialization across firms. However, the correlation between worker types

and occupational categories also implies that the segregation of worker types in different firm

classes entails the parallel segregation of occupations in those classes. This is consistent with

assortativity between workers’ specialized skills and firms’ specific tasks, which we interpret

as evidence of horizontal task specialization across firms.

Overall, the results of the first stage of our analysis support the conclusion that wage

inequality is driven by both vertical and horizontal task specialization across firms. In the

second stage, where we test whether specialization is caused by robot adoption, we find that

this indeed the case as our shift-share instruments foster both sorting and segregation. We can

therefore conclude that our econometric analysis reveals the presence of both ‘routine-biased
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technological change’ (RBTC), whereby new technology decreases the relative demand for

workers in traditional routine tasks, and ‘core-biased technological change’ (CBTC), whereby

new technology requires workers with specialized knowledge independently of their tasks

being more or less routine intensive.

Finally, we round off the paper by showing that our empirical findings can be rationalized

within a theoretical random-search framework with two-sided heterogeneity, on-the-job

search, job poaching, and a bargaining process à la (Rubinstein 1982) in the wake of (Cahuc,

Postel-Vinay and Robin 2006) and (Bagger and Lentz 2019). In this framework, we model

the impact of automation as strengthening production complementarities between workers’

specialized skills and firms’ specific tasks and disproportionately reducing the search frictions

for higher worker types. We then show that stronger complementarities and lower search

frictions increase wage dispersion with a relevant role played by both between and within

firm class dispersion.

The relations of our paper with the existing literature are manifold. First, it relates to the

expanding empirical literature that studies task-biased technological change and its role for

inequality (see (Autor et al. 2003), (Autor, Katz and Kearney 2006) or, more recently, (Cortes,

Lerche, Schönberg and Tschopp 2020a)). Second, it relates to the literature examining more

broadly within- versus between-firm inequality (see (Card, Heining and Kline 2013), (Song,

Price, Guvenen, Bloom and Von Wachter 2019), (Barth, Bryson, Davis and Freeman 2016),

(Helpman, Itskhoki, Muendler and Redding 2017)) or studying the rise in market concentration

and ‘superstar’ firms (see (Autor, Dorn, Katz, Patterson and Van Reenen 2020), (Dorn, Katz,

Patterson, Van Reenen et al. 2017), (Azar, Marinescu, Steinbaum and Taska 2020b) or (Azar,

Marinescu and Steinbaum 2020a)). While this literature emphasizes the role of productivity,

we highlight the role of sorting in disproportionately increasing the surplus of the superstar

firms, which are more likely to poach, hire and retain highly specialized workers for their

tasks. Third, our focus on task-biased technological change links our paper to (Autor et

al. 2003), (Autor et al. 2020) and (Cortes, Lerche, Schönberg and Tschopp 2020b), while the

link between automation and wage inequality relates it to (Acemoglu and Restrepo 2020) and

(Acemoglu, Lelarge and Restrepo 2020). With respect to all these works, what distinguishes

9



our paper is its focus on the effects of automation on wage inequality as mediated by horizontal

task specialization (CBTC) on top of vertical task specialization (RBTC).

Fourth, in terms of econometric methodology, our work builds on a recent literature (see

(Andrews et al. 2012) and (Bonhomme et al. 2019)) that introduces complementarities in the

classical two-ways fixed effect estimation of earnings distributions and worker composition

on matched panel data with two-sided worker-firm unobserved heterogeneity (see (Abowd et

al. 1999) or (Card et al. 2013)). With respect to this literature, we augment the finite-mixture

model of (Bonhomme et al. 2019) with a procedure to locally assign workers in specific

occupations to the estimated wage bins. The methodology successfully deals also with the

identification bias highlighted by (Eeckhout and Kircher 2011) in the classical two-ways fixed

effect estimation.

Finally, our paper contributes to the theoretical literature on two-sided heterogeneity,

rent sharing, and firm-to-firm worker mobility due to on-the-job search and employeed

poaching as modeled by (Postel-Vinay and Robin 2002) and (Cahuc et al. 2006) through

a bargaining game à la (Rubinstein 1982). With respect to this literature, we emphasize

the role technological change plays for wage inequality in fostering the assortativity between

workers’ specialized skills and firms’ specific tasks.

The rest of the paper is organized as follows. Section 2 introduces the dataset and

documents the evolution of wage inequality. Section 3 presents the empirical strategy. Section

4 reports the econometric results. Section 5 presents the theoretical model. Section 6

concludes.

2. Data Description and Stylized Facts

Our investigation of the effects of robot adoption on wage inequality through firm-worker

assortativity leverages a unique confidential dataset provided by the Italian National Social

Security Agency (INPS) on contracts between Italian firms and workers from 1983 to 2020,

enriched with information on robot acquisition made available by the International Federation

of Robotics (IFR) from 1995 to 2017.
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Contracts. The INPS dataset reports administrative social security data on a matched

employer-employee panel covering the universe of Italian firms from 1983 to 2018. Contract

level information for workers is linked to several firm-level variables.

Workers. On the worker side, the dataset reports information on all contracts in a

given year. In each year we select the contract with the longest duration and we break ties

by keeping the highest paying contract as standard in the literature. To control for the

gender pay gap, we focus on male workers, which is also quite common in the literature. We

correct for the intensive margin of labor supply by using weekly wages and accommodate for

part-time workers by using ‘full-time equivalent weeks’ to compute the weekly rate.4 Wages

are deflated by the CPI index from the OECD with base year 2015. The dataset allows us to

locate firms and workers at the NUTS 3 level (‘province’) from 1983 to 2019.

Firms. On the firm side, contracts are linked to identifiers from CERVED.5 Specifically,

the CERVED-INPS panel contains balance sheet data for the universe of private firms in

Italy from 1996 to 2018. We use this information to estimate production functions and to

compute sectoral employment shares.

Technology Adoption. The IFR collects information on automated robot purchases

for all countries in the world. As we will describe in Section 3.2, we exploit a panel of 25

countries from 1995 to 2017 to build exogenous measures of robot adoption .

Wages. We employ two different measures of wage earnings. The first is salaries as

reported in workers’ contracts. The second is a Mincer residual from the following regression:

log(yijt) = α +
3∑
r=2

βr(ageit − 40)r + γ tenureijt +
∑
m

∑
t

(ηm × ζt) + uijt, (1)

where yijt is salary of worker i employed by firm j in year t, age it is the worker’s wage,

tenureijt is the time the worker has been employed by firm j, ηm is a dummy for two-digit

Ateco sectors, ζt a year dummy and uijt is an error term. As in (Boeri, Ichino, Moretti and

Posch 2021), we also control for sectoral fixed effects since the sectoral composition of the

workforce at the local level may conflate the identified fixed effects.6

4 ‘Full-time equivalent weeks’ are reported in the dataset.
5 Cerved is a leading Information Provider in Italy and one of the major rating agencies in Europe.
6 Following (Card et al. 2018), we use a third degree polynomial of age excluding the linear term.
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Time Intervals. As discussed in the Introduction an important aspect of the methodology

we use to identify unobserved firm and worker characteristics concerns the choice of the

time window for the estimation. On the one hand, larger windows increase the number of

movers, which are crucial for identifying unobserved worker characteristics. On the other

hand, smaller windows increase the number of point estimates in the time dimension. We

choose a four-year window, and to increase the number of point estimates, we adopt the

R-AKM technique formalized by (Lachowska, Mas, Saggio and Woodbury 2020) and employ

a rolling four-year window for the estimates of the worker-firm fixed effects.7 In such a way,

we obtain nine estimation intervals for which also automated robot information is available.

Focusing on the salaries reported in workers’ contracts for descriptive purposes, our data

provide a vivid picture of the evolution of Italian wage inequality and its components in the

period of observation. Three main facts stand out. First, as shown in Figure 1, this is a

period of sizeable growth in wage inequality. The figure considers three inequality measures:

the 90-10 percentile ratio, the 75-25 percentile ratio and the variance. They all go up, by

roughly 10%, 20% and 30% respectively.

7 See Appendix A for additional details.
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Figure 1: Wage dispersion - Timeseries

Note: Earnings dispersion, 1983-2019. We report the difference between the 75th and 25th percentile of the

log weekly wage distribution, as well as the difference between the 90th and the 10th, and the variance of our

earnings measure. Salaries are collected for male employees, aged 20-60, and corrected for part-time working

arrangements.

Second, Figure 2 shows that the growth in wage inequality is mainly driven by rising

wage dispersion between firms. Third, for a given task in a given sector, the main driver of

wage inequality is match heterogeneity for the same task across firms within the same sector.

These additional facts, displayed in Figure 3, are revealed by the following wage variance

decomposition, which enriches the canonical one (see (Song et al. 2019)) by cutting across

occupations (‘tasks’) and sectors:

var(yi) = n−1
∑
j

∑
(i∈j)

(log(yi)− log(yj))
2

︸ ︷︷ ︸
within firm

+n−1
∑
s

ns(log(ys)− log(y))2

︸ ︷︷ ︸
between firm, between sector

+

+n−1
∑
so

nso(log(ys)− log(yso))
2

︸ ︷︷ ︸
between firm, within sector, between task

+ n−1
∑
so

nso(log(yso))
2

︸ ︷︷ ︸
between firm, within sector, within task

where yi is individual wage, the upper bar denotes means while j, o and s index firms,

(3-digit) occupations and (3-digit) sectors respectively. The within-task component captures
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deviations of individual wages from the mean wage in their task, whereas the between-task

component captures deviations of the mean task wage from the aggregate mean wage. Figure

19 shows that the between-firm, within-task and within-sector component accounts for the

largest part of the variance.

Figure 2: Variance decomposition - Within- and Between- Firm Components

Note: The wage dispersion is here characterized as the sum of two components, the within-firm component

and the between-firm component. The former is defined as the variance of the individual deviations from

their employers average wage, the latter as the variance of the firm average wages.

Clearly, these facts do not necessarily imply an increase in the assortativity between workers’

specialized skills and firms’ specific tasks as between-firm wage inequality may be driven by

the variance of unobserved firm characteristics, the variance of worker characteristics or the

correlation between unobserved firm and worker characteristics (i.e. ‘sorting’). Moreover,

the increase in assortativity during the period of observation may not be necessarily due to

technological change. In the next section we present how we approach the solution of these

identification problems.
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Figure 3: Variance decomposition - Task, Firms, Industries

Note: The decomposition shown in Figure 2 is further refined, partitioning the between-firm component into

three sub-components. Namely, the between-firm component is the sum of the between-firm, between-sector,

between-task variance; the between-firm, within-sector, between-task variance; and the between-firm, within-

sector, within-task variance. Tasks are defined following the three-digit ISCO-08 classification (available only

from 2010 onwards), sectors follow the three-digit ATECO classification.

3. Empirical Strategy

Our approach to testing the impact of robot adoption on wage inequality through sorting

consists of two main stages. In the first stage we employ an econometric methodology à la

(Bonhomme et al. 2019) to identify and estimate unobserved worker and firm characteristics

and then their correlation. We will argue that this methodology has several advantages

in terms of properly accounting for non-linearities and alleviating identification as well as

incidental parameter biases. The first stage is itself divided into a clustering pre-stage, which

helps to improve identification, and a sub-stage, in which we estimate a finite-mixture random

effect specification for wages. The outcome of the first stage is a robust and precise estimation

of the correlation between unobserved worker and firm characteristics. In the second stage, we

regress the estimated correlation on an exogenous measure of robot adoption à la (Acemoglu

and Restrepo 2020), while controlling for other factors that may affect sorting.
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3.1. First Stage: Estimating Sorting between Firms and Workers

Traditional econometric specifications (see e.g. (Abowd et al. 1999), (Card et al. 2018))

devoted to separately identify the roles of firm characteristics, worker characteristics and

their combination typically feature the separable additive structure:

yijt = θi + ψj(i,t) + X̄itβ̄ + εijt (2)

where i, j and t index workers, firms and time respectively (with assignment function

j ← j(i, t)). According to (2), the wage yijt of worker i, employed by firm j at time t depends

on the employee’s individual ability to command a wage premium (θi), the wage-setting

policy or the characteristics of the employer, (ψj(i,t)) and a set of individual or match specific

characteristics (X̄it). This specification implies that, if one abstracts from other covariates,

the wage variance var(yijt) can be decomposed in the variance of worker characteristics, the

variance of firm characteristics and their covariance:

var(yijt) = var(θi) + var(ψj(i,t)) + 2 × cov(θi, ψj(i,t)) + var(εijt) (3)

where the covariance of worker and firm characteristics is equal to the product of their corre-

lation multiplied by their standard deviations: cov(θi, ψj(i,t)) =corr(θi, ψj(i,t))sd(θi)sd(ψj(i,t)).

As this correlation measures sorting between firms and workers, decomposition (3) highlights

the role of sorting for wage dispersion. A richer decomposition of the wage variance (see

e.g. (Song et al. 2019)) shows that sorting affects wage inequality through its between-firm

component:

var(yijt) = var(θi − θ̄j) + var(εijt)︸ ︷︷ ︸
within-firm inequality

+

+ var(ψj(i,t)) + 2× cov(θ̄j, ψj(i,t)) + var(θ̄j)︸ ︷︷ ︸
between-firm inequality

(4)

where θ̄j denotes average worker characteristics in firm j. In particular, according to (4),

with positive assortativity (i.e.corr(θi, ψj(i,t)) > 0), more sorting (here expressed as higher
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corr((θ̄j, , ψj(i,t))) fosters wage inequality by raising its between-firm component through

higher cov(θ̄j, ψj(i,t)).

These decompositions show that a correct understanding wage inequality hinges on a

precise and robust estimation of firm and worker characteristics and their combination.

Although very versatile, traditional specifications such as (3) face two main challenges. They

neglect complementarity-induced non-linearities that plausibly exist between worker and firm

characteristics, and are often plagued by an identification bias as well as by an incidental

parameter bias. The latter arises whenever many parameters are estimated with relatively

few observations ((Andrews et al. 2012)). This is particularly relevant in our case. The

estimation of firm fixed effects requires the same firm to employ different workers, which

is typically what we see in the data. Analogously, the estimation of worker fixed effects

requires the same worker to work for different firms, which however happens only to workers

who change employer (‘movers’). As the number of observations is given by the sum of the

numbers of firms and workers (which are themselves equal to the numbers of firm and worker

fixed effects) plus the number of movers (who are typically relatively few), the incidental

parameter bias is often referred to as the ‘low mover bias’. This is associated with lack of

power in the estimation of worker fixed effects and misleading identification ((Eeckhout and

Kircher 2011)).

Both challenges could be properly addressed using interacted random effects specifications,

which are however computationally infeasible. Highly refined two-way fixed effects specifi-

cations could capture non-linearities, but the large size of the parameters, against the low

number of observations reduces estimates precision even further.8 An alternative way has

been recently put forth by (Bonhomme et al. 2019) who propose to estimate the following

finite-mixture specification:

yijt = θj + ψj(i,t)Θi + X̄itβ̄ + εijt (5)

where Θi is a one-dimensional worker random effect and [θj, ψj(i,t)] is a two-dimensional firm

8 Random effects imply fewer parameters to estimate and correlated random effects à la (Chamberlain 1980)
allow for non-linearities. The corresponding maximum-likelihood algorithm is, however, very demanding
from a computational point of view.
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fixed effect. While the interaction term ψj(i,t)Θi captures potential non-linearities, the number

of estimating parameters is further reduced by clustering firms into homogeneous ‘classes’

and running (5) with firm class fixed effects instead of individual firm fixed effects. The

structure of an employer-employee dataset corresponds to a bipartite network with firms on

the one side and workers on the other. For precise identification of firm characteristics, each

firm has to be linked to several workers. Analogously, for a precise identification of worker

characteristics, each worker has to be linked to several firms. In short, precise identification

requires full network connectivity with as many observations as possible. The traditional

approach is to focus only on connected workers (‘movers’) and their employers, but its

estimates are not robust to sample size ((Andrews et al. 2012)). Differently, clustering firms

into classes transposes partial network connectivity between individual firms and workers into

full connectivity between firm classes and workers, and its estimates are robust to sample size.

Maximum likelihood estimation of (5) delivers precise estimates of the firm-class fixed effects

and the distribution of the worker random effects.9 To lessen the computational burden of

the latter mitigating the curse of dimensionality, the worker distribution is discretized to

obtain worker ‘types’ that parallel the firm classes. Finally, the time window for estimation

is is set to four years so as to be large enough to accommodate a good number of movers,

but also small enough to keep firm and worker characteristics reasonably stable.10 The

resulting estimated firm classes and worker types can be used to measure sorting and assess

its relevance for wage inequality through the variance decompositions (3) and (4).

3.1.1. Firm Classes

Firm clustering is obtained by applying a weighted k-means algorithm to the firm wage

distribution that solves the following optimization problem:

min
k(1),...,k(J),H1,...,H10

J∑
j=1

nj

∫ (
F̂j(y)−Hk(j)(y)

)2

dµ(y) (6)

9 As workers are the less connected side of the network, maximum likelihood also helps improve information
efficiency.

10 Relying on Swedish matched employer-employee panel data from 2002 to 2004, (Bonhomme et al. 2019)
use a two-year window for their static model and a four-year window for their dynamic model.
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where J is the number of firms in the dataset (indexed j = 1, ..., J), k(1), . . . , k(J) is a

partition of them in K clusters (‘classes’), F̂j is the empirical cumulative density function

of wages in firm j. The number of firm clusters K is set to 10, but we check robustness to

changing their number (see Figure 18 in the Appendix). H1, . . . , H10 are cumulative density

functions of the firm clusters. µ(y) are discrete moments of the firms’ wage distributions -

in particular, for each firm they are 19 percentiles (from the 5th to the 95th) of its wage

distribution. nj is the number of workers in firm j and its presence implies that in (6) each

firm is weighted by the number of its employees.

3.1.2. Worker Types

Worker types are obtained by approximating the distribution of worker wages through a

finite support population density. Following (5), we set the number of worker types L to 6,

denoting them by α1, α2, α3, α4, α5, α6. The approximated distribution is then estimated

through maximum likelihood using a finite mixture model. The estimation relies on the

following joint probability distribution:

p(ȳi|1, . . . , ȳi|L | m = 1) =
K∑
k=1

K∑
k′=1

I(k̂i2 = k)I(k̂i3 = k′) . . .

. . .
L∏
α=1

pkk′(α, θp)fy12,k,α(yi1, θf )fk,k′,α(yi2, yi3, θm)fyi3,k′,α(yi4, θb) (7)

where ȳi |α = {yi1, yi2, yi3, yi4 |α} refers to the vector of observed yearly wages in the four-year

estimation window for mover i (m = 1) of type α. The objects of interests are the probability

pkk′(α) that a worker of type α moves from firm class k to firm class k′, and the wage

distributions f ’s parametrized by θp, θf , θm and θb. Each wage distribution depends on both

the firm class and the worker type (fk,α), and the wage at any time t depends on future and

past earnings. The corresponding log-likelihood function then is:

n∑
i=1

log p(ȳi|1, . . . , ȳi|L | m = 1) (8)
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where n is the total number of workers. The finite mixture log-likelihood function is maximized

using the Expectation-Maximization (EM) algorithm. The log-likelihood function allows

us to estimate the distribution parameters θp, θf , θm and θb. While (7) applies to movers

(m = 1), the joint probability distribution for stayers (m = 0) can be obtained by replacing

pkk′(α) with the share of stayers of type α in firm class k so as to retrieve the overall density

of workers of type α in firm class ki. To address the possibility of local maxima, we iterate

the EM algorithm multiple times, select iterations with the highest likelihood and, among

these, eventually pick the one that maximizes network connectivity as defined by (Jochmans

and Weidner 2019).

3.1.3. Time-Varying Local Sorting

The correlation of estimated firm-class characteristics and estimated worker-type characteris-

tics gives an estimate of sorting. For our purposes, however, this estimate has to vary both

across time and across local economies. These features require to innovate with respect to

(Bonhomme et al. 2019) in two ways.

In a dynamic setting, the finite-mixture method estimation by (Bonhomme et al. 2019) is

applied using a single time window of four years. Since our data sample spans the period

from 1983 to 2020, we can run our estimation on several windows, repeating our k-means

classification at the start of each window. However, the possibility of obtaining a long enough

time series of sorting estimates is crucial for our analysis given that its second stage consists

in regressing the sorting estimates on measures of technology adoption. The statistical power

of the second stage clearly depends on the number of our sorting estimates. To maximize

this number while sticking to four-year windows, we re-estimate firm-class and worker-type

characteristics every second year over partially overlapping 4-year intervals.

The second extension we make to (Bonhomme et al. 2019) is motivated by the fact that, in

order to estimate sorting in local economies, unobserved firm and worker characteristics have

to be themselves estimated at the local level. Assigning firm classes to local economies by

the addresses of the firms they include is relatively straighforward as the k-means algorithm

provides an exact partition of firms into such classes. This is not the case, however, for
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worker types as the same does not hold for the probabilistic types obtained from the finite

mixture specification. We tackle this issue by computing the probabilities that individual

workers belong to the different worker types and associate them with their highest probability

type. We then assign worker types to provinces by the addresses of the workers they include.

Specifically, we assign worker i to the type that maximizes the posterior probability of the

worker being of that type as estimated through Bayesian updating:

arg max
α∗

p(α = α∗|yi, ki) = arg max
α∗

fki,α∗(yi) qki(α
∗)∑J

j fki,αj(yi) qki(αj)
(9)

where yi is worker i’s wage, ki is the worker’s employer class, fki,α(yi) is the density of workers

of type α in firm class i with wage yi, and qki(α) is the overall density of workers of type α

in firm class ki.

3.2. Second Stage: Estimating the Impact of Robots on Sorting

The key output of the first stage is the estimated correlation between firm-class and worker-

type characteristics across local economies, which gives us a measure of sorting at biennal

frequency. In the second stage this measure is regressed on exogenous robot adoption. This

is captured following (Acemoglu and Restrepo 2020) by the shift-share instrument:

automationIVp =
∑
s∈S

Lps

[
1

N

N∑
c=1

(
dM c

s

Lcs
− dY c

s

Y c
s

M c
s

Lcs

)]
(10)

where M c
s and Y c

s are the stocks of automated robot and value added in sector s respectively,

dM c
s and dY c

s are the changes in the two stocks over a two-year interval matching the

biennal frequency of the sorting measure, and Lcs is the employment share of sector s. The

superscript c refers to a country in a set of N = 24 countries including the US, Japan and

Europe excluding Italy.11 Accordingly, the term between brackets measures the average

exposure to robot adoption in sector s across that set of countries. As these countries

are similar to Italy, their exposure should be similar to the Italian one, but independent

11 The detailed list of countries is: AT, BE, BG, CZ, DE, DK, EE, ES, FI, FR, HU, IE, JP, LT, LV, MT,
NL, PL, PT, RO, SE, SK, UK, US.
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of Italy-specific developments. While data on M c
s come from IFR, those on Y c

s and Lcs

are taken from EUKLEMS. Different sectoral exposure is apportioned across Italian local

economies (‘provinces’) through importance of each sector for local employment Lps. Hence,

automationIVp measures the exposure of Italian local economy p to robot adoption that is

independent from local and national shocks in Italy. Thus, we use such measure to instrument

for the endogenous robot adoption, measured as follows:

automationp =
∑
s∈S

Lps

(
dMs

Ls
− dYs

Ys

Ms

Ls

)
(11)

Equipped with an arguably exogenous measure of robot adoption, we test its impact on

sorting through the following specification:

sortingpτ = α + β automationpτ +
∑

i∈{25, 50, 75}

γi HHIiτ+

+ δ1 Share Manufacturingpτ + δ2 Share Constructionpτ + ζτ × λ+ εpτ (12)

where p is the local economy index, τ is a two-year time period and automationpτ is

instrumented robot adoption. The other variables control for factors that may affect sorting

independently of robot adoption: HHIiτ is the i-th percentile of the Herfindahl–Hirschman

index measuring employment concentration across two-digit sectors, Share Manufacturingpτ

and Share Constructionpτ are the employment shares of the corresponding sectors, and ζτ

is a biennal dummy. The interacted λ is a dummy for the geographical macro areas in

which Italy is statistically partioned in decreasing order to economic development: North-

West, North-East, Centre, South, and Islands. The Herfindahl–Hirschman index serves the

purpose of controlling for the possible effects of market concentration on sorting due to firm

monopolistic power.

4. Empirical Results

We now present the results of our two-stage analysis. As for the first stage, we start with a

comparison of our estimated correlation between firm-class characteristics and worker-class
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characteristics with the correlation obtained from traditional approaches. This is folllowed by

a discussion of the implications of our estimated correlation for wage variance decompositions.

As the firm classes and the worker types derived from the finite-mixture approach have only

implicit connections to the underlying firm and worker characteristics, to shed further light

on the drivers of wage inequality, we then make those connections more explicit by relating

the firm classes and the worker types to observable firm and worker characteristics. Lastly,

we turn to the second stage discussing the results on whether and how robot adoption affects

wage inequality through the recombination of firm classes and worker types.

4.1. Sorting Estimation Revisited

Sorting is our key outcome variable. We have discussed the threats to the robustness and

precision of its estimation in the traditional linearly additive fixed effect specification (2). To

show that those threats are indeed consequential, we compare the sorting estimates obtained

from the finite-mixture specification (5), which we call ‘BLM’, with those obtained from two

alternative approaches. The first implements (2) with additive individual firm and worker

fixed effects. The second gets closer to the two-step logic of (5) by implementing (2) with

firm-class fixed effects after clustering firms using the k-means algorithm. We call the former

‘AKM’ and the latter ‘2s-AKM’. In all cases sorting is estimated in the first two years of

partially overlapping four-year intervals. Compared with the approach based on (5), the

second alternative approach dispenses with the maximum likelihood estimation of worker

types.

First, we replicate the subsampling exercise of (Andrews et al. 2012) to show the sensitivity

of the sorting estimates based on (2) to sample size. In particular, we compare AKM and

2s-AKM estimates from the same subsamples. The exercise runs as follows. We take a 10%

random sample of workers, and define p as the proportion of workers sampled (p = 0.1).

We record the identities of all firms that employ the sampled workers and we keep largest

connected set of firms and workers. Keeping the sampled firms fixed, we increase p to 0.2,

0.3, 0.5 and 1. We generate ten k -means firm classes for each value of p and estimate the

23



Figure 4: Subsampling exercise

Note: Here we replicate the subsampling exercise from (Andrews et al. 2012), showing how the sorting

estimates of AKM are over-reliant on the number of movers per firm. we compare the AKM estimates with

the ones from 2s-AKM. The latter are significantly more stable and less dependent on the number of movers.

corresponding sorting by AKM and 2s-AKM. The results are summarized in Figure 4, which

clearly show how clustering leads to more stable estimates.

Second, we compare the sorting estimates from AKM, 2s-AKM and BLM. Here 2s-AKM

is estimated using the same sample as AKM, for direct comparability. BLM, instead, retains

only movers who switch job only between the second and third year. We present the three

sorting estimates in Figure 5, their cumulative increases in Figure 7, and their period-on-

period increases in Figure 6. The reason for showing those additional transformations is

twofold. First, cumulative and period-on-period increases track the dynamics of sorting.

Second, it is often believed that the increment in sorting, which is a variable of interest in

most analyses of worker and firm contributions to wage inequality, tends to remain stable

independently of the degree of network connectivity. Hence, it should be unaffected by

k-means clusterization. Our results show that this is not the case.

Figure 5 shows that there is a large difference between the AKM estimates on the one side

and those from 2s-AKM and BLM on the other. Moreover, Figure 6 highlights that a large

difference between estimates with and without clusterization also exists in the change of

sorting over time. Finally, Figure 7 shows that the difference cumulates over time. The fact
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Figure 5: Sorting levels

Note: Sorting levels estimated through (Abowd et al. 1999), two-step additive fixed effects, and finite-mixture

model. The first two algorithms run on the same sample of workers, hence they are directly comparable.

The finite-mixture requires restrictions in the pattern of job movements allowed in the sample. Sorting is

estimated on 4-year, partially overlapping intervals. The sorting is calculated in the first two year of each

interval.
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Figure 6: Period-on-period sorting increase

Note: Period-on-period increase in sorting, estimated through (Abowd et al. 1999), two-step additive fixed

effects, and finite-mixture model. The first two algorithms run on the same sample of workers, and are thus

directly comparable. The finite-mixture requires restrictions in the pattern of job movements allowed in the

sample. Sorting is estimated on 4-year, partially overlapping intervals. The sorting is calculated in the first

two year of each interval.

that the two-step approaches lead to very similar results suggests that firm clusterization

significantly mitigates the incidental parameter bias. However, the fact that the period-on-

period and cumulative estimated increase is not perfectly aligned between 2s-AKM and BLM

suggests that allowing for non-linearities may be also important.

4.2. Variance Decomposition Revisited

Focusing now on our implementation of BLM, Figures 8 and 9 report the results for decom-

position (3) in the case of raw and Mincer wages respectively.12

First, more than half of the explained variance is due to the worker heterogeneity. The

role of firms is rather small, while the covariance component is significant and sizeable, a

feature seldom captured by baseline (Abowd et al. 1999) estimates. It is remarkable that,

despite the discretization of two-sided heterogeneity, worker types and firm classes are able

12 The Mincer residual from OLS regression 1 explains 20% of total wage variance.
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Figure 7: Cumulative sorting increase

Note: Cumulative sorting increase estimated through (Abowd et al. 1999), two-step AKM, and (Bonhomme

et al. 2019). The first two algorithms run on the same sample of workers, and are thus directly comparable.

The latter algorithm imposes some restrictions in the pattern of job movements allowed in the sample. We

estimate sorting on 4-year, partially overlapping intervals. The sorting is calculated in the first two year of

each interval.
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Figure 8: Baseline wage variance decomposition - No Mincer

Note: The variance decomposition is obtained using estimates of 2 in which we employ the firm and worker

effects, obtained respectively from the k-means clustering and the finite-mixture estimation. The measure of

wage in this case is raw earnings.

to explain about 80% of the total wage variance in all periods. Most importantly, positive

covariance reveales the presence of positive assortativity.

The predominance of the worker fixed effect may seem in contradiction with our stylized

fact in Figure 19 showing that the between-firm, within-task and within-sector component

accounts for the largest part of the variance. This is not the case. The presence of positive

assortativity sheds light on the underlying mechanism. Superior firms hire workers who can

best perform the core task within the industry. They also pass higher rents to those workers.

This selective composition of the workforce explains why decomposition (3) assigns a larger

role to worker characteristics.

To elaborate further on the role of sorting, we compute and plot the alternative decompo-

sition (4), which separates the within-firm and between-firm components. The corresponding

results are shown in Figures 10 and 11 respectively. Worker heterogeneity within firm class

(measured by var(θi − θ̄j)) accounts for the largest part of wage inequality. However, the

contribution of worker heterogeneity between firm classes is also quite relevant. In particular,
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Figure 9: Baseline wage variance decomposition - Mincer

Note: The variance decomposition is obtained using estimates of 2 in which we employ the firm and worker

effects, obtained respectively from the k-means clustering and the finite-mixture estimation. The measure of

wage in this case is obtained by the estimated Mincer residual from equation 1.

beyond firm heterogeneity (measured by var(ψj(i,t))), the figures highlights the importance of

sorting (included in cov(θ̄j, ψj(i,t))) and of the dispersion of average worker characteristics

across firm classes (measured by var(θ̄j)). The latter reveals the concentration of similar

worker types in similar firm classes, a pattern that we may call ‘worker segregation’. The

fact that the estimated between-firm and within-firm components are remarkably stable

throughout the period of observation testifies to the precision and robustness of the estimates.

4.3. Firm Classes and Worker Types

The firm classes and worker types derived from the BLM finite-mixture approach have only

implicit connections to the underlying firm and worker characteristics. To shed light on the

drivers of wage inequality, it is useful to try to make those connections more explicit by

relating the firm classes and worker types to obserbable firm and worker characteristics. This

provides further insight on the worker characteristics that explain within-firm inequality, the

firm characteristics that explain between-firm inequality, and their possible association.
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Figure 10: Between-within wage variance decomposition (Fixed effects) - No Mincer

Note: The plot shows the log weekly wage variance decomposition shown in Equation 3. ”Worker dev”

is worker heterogeneity within the same firm cluster and is measured as. var(θi − θ̄j)). ”Worker avg” is

aggregating workers of similar quality among the same employer, formally it is given by var(θ̄j)), and we

refer to it as worker segregation. The between and within components are estimated using the subsample

built under (Bonhomme et al. 2019) restrictions.
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Figure 11: Between-within wage variance decomposition (Fixed effects) - Mincer

Note: The plot shows the wage variance decomposition following Equation 3 and using the estimated Mincer

residual of the log weekly wage. ”Worker dev” is worker heterogeneity within the same firm cluster and is

measured as. var(θi − θ̄j)). ”Worker avg” is aggregating workers of similar quality among the same employer,

formally it is given by var(θ̄j)), and we refer to it as worker segregation. The between and within components

are estimated using the subsample built under (Bonhomme et al. 2019) restrictions.
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4.3.1. Characterizing Worker Types

We start by examining the relations between worker types and task complexity as measured by

an occupation’s relative intensity in non-routine versus routine intensive tasks. This requires

matching the workers types with with occupational categories. The latter are available in our

dataset only from 2010 to 2017, hence we limit our matching exercise to that time period.

The level of disaggregation is one-digit ISCO occupations, which entails ten occupational

categories that we order from the most intensive in non-routine tasks to the most intensive in

routine tasks.13. Figures 12 and 13 show that looking at the shares of workers of a given type

who fall in each occupational category reveals that worker types commanding higher wages

are associated with occupational categories characterized by lower routine task intensity.

This applies no matter whether we consider raw wages or the Mincer residuals. We interpret

these findings as suggestive evidence of vertical task specialization across firms, whereby firms

requiring more complex tasks are more likely to hire workers possessing higher skills, and

hence commanding higher wages. This provides another angle from which we can square the

large contribution of the between-firm component with the large contribution of estimated

worker types to the wage variance shown in Figures 8 and 9.

13 One-digit ISCO occupation 1 corresponds to managers, 2 to professionals, 3 to technicians and associate
professionals, 4 to clerical support workers, 5 to service and sales workers, 6 to skilled agricultural,
forestry and fishery workers, 7 to craft and related trades workers, 8 to plant and machine operators
and assemblers, 9 to elementary occupations, 10 to armed forces. With the notable exception of the last
category (which we exclude), higher categories in the ordinal ISCO classification broadly correspond to
occupations that are less complex in terms of their relative routine intensity.
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Figure 12: Worker types - Occupational categories association - Raw Earnings

Note: The plot shows the share of worker-year observation in type x associated to occupational category y,

for x ∈ {1, . . . , 6} and y ∈ {1, . . . , 9}. Worker types are estimated through finite-mixture method recursively

every two years and using the observed log weekly wage. Occupations are the one-digit ISCO occupations,

ten categories which are ordered from the most intensive in non-routine tasks to the most intensive in routine

tasks.

We then look at other observable worker characteristics that are available in our dataset.

In particular, we regress worker types are regressed on mover status, job description (six

dummies for trainee, blue collar, white collar, manager or executive), age, weeks worked, and

geographical macro area of employment. As there are potentially several concurring variables

determining the worker type, we employ multinomial logit specifications. The estimates for

each worker type are compared to type 3, which we therefore take as benchmark. Estimation

is performed on the 2005-2008 four-year window. Table 1 shows the results when worker
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Figure 13: Worker types - Occupational categories association- Mincer residual

Note: The plot shows the share of worker-year observation in type x associated to occupational category y,

for x ∈ {1, . . . , 6} and y ∈ {1, . . . , 9}. Worker types are estimated through finite-mixture method recursively

every two years and using the Mincer residual. Occupations are the one-digit ISCO occupations, ten categories

which are ordered from the most intensive in non-routine tasks to the most intensive in routine tasks.
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types are estimated using raw wages, while Table 2 shows the results for the Mincer residual.

While the link to some variables appear inconclusive, other relations are clearer. For instance,

higher worker types (5 and 6) unequivocally have a higher probability of being employed in

top position within the firm’s organization (executives). Age as well as weeks worked are

good predictors for the workers being assigned to higher wage clusters (5 or 6).14 The finding

on age can be explained in terms of human capital accumulation: as workers become more

experienced, they are more likely to be hired by firms paying higher wages. The geographical

distribution of workers is as expected given the economic development of the macro areas:

workers of higher wage types are located mostly in the North.

A puzzling pattern is the association of the lower worker type (1) with some characteristics

that are typical of high income earners, such as being an executive. There are good statistical

and economic reasons for that. Worker type 1 is very small, counting only 28 thousand

workers in a sample of almost 3 million workers. This makes it very sensible to outliers. The

puzzling pattern indeed disappears when we employ as dependent variable the worker fixed

effects estimated using the Mincer residual (Table2). Moreover, worker type 1 may capture

individual contracts of non-executive board members, whose salaries albeit high may not

parallel those of executives, or of other professions, such as civil servants, that command

lower wages than their equivalent in the private sector.

4.3.2. Characterizing Firm Classes

In the case of firms, the dependent variables for the multinomial logit regressions are the

firm classes, taking class 5 as benchmark. Estimates are again performed on the 2005-2008

four-year window. The regressors are employment, value added, local sales shares, poaching

score and geographical macro area dummies. Following (Bagger and Lentz 2019) the poaching

score is computed as the four-year average of the ratio of new hires from other firms over

total new hires.

The corresponding results are shown in Table3 for the firm classes obtained with raw wages

and in Table 4 for those obtained using the Mincer residuals. Results are intuitive. Firms

14 The number of weeks worked tends to be positively associated with worker wage classes, except for the
highest class.
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Table 1: Multinomial logit - Worker Types on Observables

(1) (2) (3) (4) (5) (6)

VARIABLES 1 2 3 4 5 6

mover 0.307*** -0.344*** 0.0364*** 0.0365** -0.234***

(0.0292) (0.0142) (0.00942) (0.0146) (0.0263)

trainee 1.632*** 1.774*** -1.476*** -3.035*** -3.901***

(0.0427) (0.0166) (0.0245) (0.0885) (0.277)

blue collar -2.268*** -0.281*** -0.579*** -2.399*** -4.765***

(0.0369) (0.0182) (0.0114) (0.0149) (0.0268)

white collar -1.313*** -0.588*** 0.732*** 0.837*** -0.376***

(0.0367) (0.0186) (0.0112) (0.0147) (0.0197)

”quadro” 4.447*** 0.480*** 3.145*** 6.178*** 6.693***

(0.0820) (0.169) (0.0723) (0.0716) (0.0728)

executive 8.551*** -0.371 0.696*** 3.894*** 7.463***

(0.135) (0.360) (0.148) (0.133) (0.133)

age 0.0679*** -0.0115*** 0.0442*** 0.0911*** 0.106***

(0.000895) (0.000337) (0.000177) (0.000278) (0.000588)

weeks -0.0748*** -0.0377*** 0.0647*** 0.0569*** -0.000258

(0.000731) (0.000328) (0.000332) (0.000537) (0.000935)

Centre 0.734*** 0.0359 0.305*** 0.850*** 1.240***

(0.0478) (0.0287) (0.0172) (0.0220) (0.0343)

Nord-East 0.896*** 0.137*** 0.728*** 1.366*** 1.858***

(0.0480) (0.0286) (0.0172) (0.0220) (0.0345)

Nord-West 1.039*** 0.157*** 0.766*** 1.383*** 1.744***

(0.0474) (0.0285) (0.0171) (0.0219) (0.0341)

South 0.612*** -0.0653** -0.0816*** 0.218*** 0.483***

(0.0482) (0.0285) (0.0172) (0.0223) (0.0358)

Islands 0.454*** -0.140*** -0.179*** 0.324*** 0.649***

(0.0526) (0.0295) (0.0178) (0.0234) (0.0392)

Observations 28,365 161,766 1,163,935 1,074,202 428,508 101,618

Standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

Note: Multinomial logit for the period 2005-2008 where the assigned worker types, estimated through

finite-mixture models, are regressed on a set of observables, namely the status of mover, the qualification (six

dummies for being employed in one of the following categories: trainee, blue collar, white collar, ”quadro” or

executive), age, weeks worked, and macroarea of employment. The reference category is the third worker

type. Estimation algorithm for worker effects employs raw earnings. Reference cluster is number 3.
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Table 2: Multinomial logit - Worker Types on Observables

(1) (2) (3) (4) (5) (6)

VARIABLES 1 2 3 4 5 6

mover 0.397*** 0.0774*** 0.0649*** 0.405*** 0.881***

(0.0172) (0.00913) (0.0123) (0.0164) (0.0287)

trainee 1.091*** 0.312*** -0.954*** -2.376*** -4.959***

(0.0277) (0.0132) (0.0215) (0.0556) (0.294)

blue collar 0.462*** 0.398*** -1.218*** -2.664*** -4.993***

(0.0267) (0.0106) (0.0126) (0.0166) (0.0368)

white collar -0.848*** -0.716*** 0.170*** -0.115*** -1.605***

(0.0264) (0.0105) (0.0124) (0.0152) (0.0240)

”quadro” -0.741*** -2.961*** 2.315*** 3.532*** 2.874***

(0.0564) (0.0452) (0.0181) (0.0194) (0.0262)

executive 0.0705 -1.858*** 2.164*** 5.421*** 7.920***

(0.164) (0.135) (0.0828) (0.0782) (0.0800)

age 0.0400*** 0.0141*** 0.0151*** 0.0402*** 0.0600***

(0.000423) (0.000170) (0.000231) (0.000358) (0.000803)

weeks -0.0898*** -0.0273*** -0.00495*** -0.0266*** -0.0709***

(0.000443) (0.000281) (0.000412) (0.000600) (0.00106)

Centre 0.0847** -0.174*** 0.555*** 0.948*** 1.344***

(0.0339) (0.0170) (0.0191) (0.0240) (0.0403)

North-East -0.275*** -0.446*** 0.708*** 1.216*** 1.651***

(0.0340) (0.0170) (0.0191) (0.0240) (0.0404)

North-West -0.215*** -0.462*** 0.728*** 1.155*** 1.526***

(0.0337) (0.0169) (0.0190) (0.0238) (0.0399)

South 0.264*** 0.101*** 0.264*** 0.644*** 0.859***

(0.0338) (0.0170) (0.0193) (0.0247) (0.0431)

Islands 0.223*** 0.0909*** 0.380*** 0.705*** 0.999***

(0.0352) (0.0175) (0.0204) (0.0268) (0.0490)

Observations 86,704 1,279,224 877,061 451,237 199,316 64,852

Standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

Note: Multinomial logit for the period 2005-2008 where the worker types, estimated through finite-mixture

models, are regressed on a set of observables, namely the status of mover, the qualification (six dummies

for being employed as a trainee, blue collar, white collar, ”quadro” or executive), age, weeks worked, and

macroarea of employment. The reference category is the third worker type. Estimation algorithm for worker

fixed effects employs Mincer residuals. Reference cluster is number 3.
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in higher wage classes exhibit higher value added per worker (‘labor productivity’) and are

less likely to be located in the less developed South. The fact that are smaller in terms of

employment is in line with growing evidence in the literature (see e.g. (Autor et al. 2020))

that better performing firms employ fewer workers as they are more technologically advanced

and pay higher wages due to larger sales shares. We do not find evidence that firms paying

higher wages have also larger sales shares. This maybe due to the fact that we measure sales

shares at the local level while better performing firms may be disproportonally active in the

national and international markets.

Finally, the poaching score provides a measure of firms’ labour market power or rent

extraction. If firms compete more aggressively for workers, they are also willing to transfer

larger rents to them. The relation between the poaching score and the firm wage clusters is

actually blurred: with raw earnings intermediate classes are more likely to poach workers;

with the Mincer residual high firm classes poach more. We think that the latter is more

reliable as the Mincer regression purges the residual from other worker covariates that may

alter the role of firm labor market power. In this respect, the results in Table 4 point to the

existence of some degree of monopsony in high firm types. While better performing firms

pay higher wages, they still pass lower rent shares to their employees.

4.4. Robot Adoption, Sorting and Specialization

Having obtained a robust and precise measure of sorting in our data, the last step of our

estimation strategy is devoted to test whether and how robot adoption affects wage inequality

through the recombination of firm classes and worker types. In particular, in the wake of

the findings on the wage variance decomposition in Section 4.2, we test whether and how

robot adoption affects firm-worker sorting (included in cov(θ̄j, ψj(i,t))) and worker segregation

(measured by var(θ̄j)). With sorting superior firm classes tend to match with superior worker

types. With segregation different worker types tend to cluster in different firm classes. As

superior firm classes are associated with higher labor productivity and superior worker types

are associated with more complex tasks, sorting implies vertical task specialization across

firms. However, the correlation between worker types and occupational categories also implies
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Table 3: Multinomial logit - Firm Clusters on Observables

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

VARIABLES 1 2 3 4 5 6 7 8 9 10

log l 1.270*** 0.528*** 0.494*** 0.387*** 0.0519 -0.801*** -0.685*** -1.419*** -2.046***

(0.0494) (0.0363) (0.0312) (0.0311) (0.0330) (0.0343) (0.0415) (0.0411) (0.0552)

log va -2.418*** -1.794*** -1.206*** -0.786*** -0.103*** 0.993*** 0.761*** 1.708*** 2.401***

(0.0435) (0.0328) (0.0289) (0.0289) (0.0307) (0.0321) (0.0385) (0.0382) (0.0500)

(mean) poach score -0.712*** -0.134** -0.0815 0.0167 -0.0792 0.0640 -0.382*** -0.332*** -0.971***

(0.0947) (0.0656) (0.0583) (0.0590) (0.0646) (0.0732) (0.0879) (0.0960) (0.143)

(mean) share sales -1.229*** 1.292*** 0.784*** 0.128 -0.460* -1.627*** -1.484*** -3.302*** -6.621***

(0.406) (0.244) (0.220) (0.225) (0.248) (0.270) (0.340) (0.358) (0.598)

(p50) (p50) macro area==Centro -0.789* -0.618** -0.150 -0.0350 -0.115 -0.309 -0.842*** -0.865*** -0.866***

(0.404) (0.305) (0.233) (0.225) (0.221) (0.200) (0.233) (0.215) (0.287)

(p50) (p50) macro area==Isole 0.0465 0.380 0.422* -0.212 -0.654*** -0.839*** -1.392*** -1.509*** -1.284***

(0.409) (0.310) (0.239) (0.233) (0.236) (0.227) (0.269) (0.265) (0.353)

(p50) (p50) macro area==Nord-est -1.394*** -1.666*** -0.759*** -0.0984 0.326 0.0501 -0.241 -0.466** -0.908***

(0.403) (0.305) (0.233) (0.224) (0.219) (0.198) (0.230) (0.212) (0.285)

(p50) (p50) macro area==Nord-ovest -1.506*** -1.834*** -0.894*** -0.220 0.235 0.185 -0.251 -0.0937 0.115

(0.403) (0.305) (0.232) (0.224) (0.219) (0.198) (0.230) (0.210) (0.278)

(p50) (p50) macro area==Sud 0.741* 0.634** 0.474** -0.104 -0.772*** -0.953*** -1.280*** -1.649*** -2.044***

(0.403) (0.306) (0.234) (0.227) (0.225) (0.209) (0.243) (0.236) (0.341)

Observations 6,132 24,264 31,330 21,990 11,335 13,096 7,945 4,590 4,029 1,807

Workforce 100,107 278,892 504,090 452,543 436,514 467,347 340,983 350,710 211,951 75,114

Standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

Note: Multinomial logit for the period 2005-2008 where the kmeans firm cluster is regressed on a set of

observables, namely (log) size of workforce, (log) value added, share of sales on markets defined as province

x 3-digit Ateco sector (the Italian classification for sectors), poaching score and macroarea dummies. The

reference category is the fifth cluster. Firm clusters are estimated on raw earnings.
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Table 4: Multinomial logit - Firm Clusters on Observables

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

VARIABLES 1 2 3 4 5 6 7 8 9 10

log l 1.402*** 0.727*** 0.199*** 0.356*** -0.349*** -0.473*** -1.180*** -1.243*** -2.176***

(0.0491) (0.0325) (0.0344) (0.0273) (0.0324) (0.0302) (0.0353) (0.0366) (0.0457)

log va -1.921*** -1.182*** 0.0779** -0.635*** 0.844*** 0.682*** 1.720*** 1.717*** 2.731***

(0.0423) (0.0288) (0.0316) (0.0243) (0.0300) (0.0276) (0.0326) (0.0338) (0.0415)

(mean) poach score -1.444*** -0.743*** -0.324*** -0.239*** 0.0630 0.179*** 0.0950 -0.0183 -0.323***

(0.0939) (0.0571) (0.0644) (0.0475) (0.0636) (0.0558) (0.0759) (0.0778) (0.111)

(mean) share sales 0.267 0.342 -0.117 0.158 -0.851*** -0.303 -1.796*** -2.094*** -4.739***

(0.327) (0.215) (0.238) (0.195) (0.248) (0.238) (0.294) (0.323) (0.457)

(p50) (p50) macro area==Centro 0.0562 1.441*** 0.645** 0.335 0.119 -0.437** -0.232 -0.715*** -0.432*

(0.457) (0.449) (0.253) (0.241) (0.207) (0.203) (0.211) (0.213) (0.254)

(p50) (p50) macro area==Isole 1.174** 2.441*** 1.257*** 0.835*** 0.0347 -0.703*** -0.529** -1.328*** -0.823***

(0.460) (0.451) (0.258) (0.244) (0.219) (0.213) (0.235) (0.246) (0.296)

(p50) (p50) macro area==Nord-est -0.719 0.515 0.391 -0.158 0.286 0.0560 0.0609 -0.102 -0.417*

(0.458) (0.449) (0.252) (0.241) (0.205) (0.202) (0.209) (0.210) (0.252)

(p50) (p50) macro area==Nord-ovest -0.714 0.536 0.524** -0.158 0.396* 0.0508 0.332 0.0937 0.371

(0.458) (0.449) (0.252) (0.241) (0.205) (0.202) (0.209) (0.209) (0.249)

(p50) (p50) macro area==Sud 1.573*** 2.703*** 1.320*** 0.897*** 0.00998 -0.922*** -0.786*** -1.292*** -1.345***

(0.457) (0.449) (0.254) (0.242) (0.210) (0.207) (0.221) (0.224) (0.281)

Observations 5,236 20,651 8,999 28,833 25,999 8,993 13,350 5,797 5,600 3,060

Workforce 84,941 292,452 365,631 421,435 552,617 395,438 461,264 269,919 263,801 110,753

Standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

Note: Multinomial logit for the period 2005-2008 where the kmeans firm cluster is regressed on a set of

observables, namely (log) size of workforce, (log) value added, share of sales on markets defined as province

x 3-digit Ateco sector (the Italian classification for sectors), poaching score and macroarea dummies. The

reference category is the fifth cluster. Firm clusters are estimated using the Mincer wages.
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that the segregation of worker types in different firm classes entails the parallel segregation of

occupations in those classes. This is consistent with assortativity between workers’ specialized

skills and firms’ specific tasks, which can be seen as evidence of horizontal task specialization

across firms.

The results for sorting are obtained by running regression (12) and are reported in Table 5

including all industries and in Table 6 excluding the automobile industry. As this industry

accounts for a large portion of Italian manufacturing, its exclusion allows us to purge the

overall patterns from potential sector specificities that may affect sorting beyond robot

adoption. For brevity, in the main text we report only the results for sorting estimated on

raw wages. Robustness checks are reported in Appendix C.2.

OLS and IV estimates are reported in Tables 5 and 6 with and without the automobile

industry. Both tables show that the impact of robot adoption on sorting is positive and

significant with meaningful economic magnitude.

Table 5: Impact of Automated Robots on Sorting - Including Automobile Industry

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

VARIABLES OLS OLS OLS OLS IV IV IV IV IV2 IV2 IV2 IV2

New Robots 0.0234*** 0.00189 0.00355 0.00309 0.0182*** 0.00620 0.00942** 0.0107*** 0.00269 0.0107 0.0115 0.0167*

(0.00341) (0.00267) (0.00276) (0.00280) (0.00434) (0.00387) (0.00396) (0.00413) (0.0110) (0.00951) (0.0101) (0.0101)

Observations 937 937 937 937 937 937 937 937 937 937 937 937

R2 0.281 0.570 0.596 0.634 0.279 0.570 0.595 0.632 0.256 0.567 0.594 0.627

Period FEs No Yes Yes No No Yes Yes No No Yes Yes No

Macroarea FEs No No Yes No No No Yes No No No Yes No

Macroarea x Period FEs No No No Yes No No No Yes No No No Yes

Mincer No No No No No No No No No No No No

A-R p value 2.52e-05 0.108 0.0160 0.0103 0.811 0.261 0.260 0.0862

M-P F stat 546.9 344.9 333.4 327.7 13.36 13.54 12.36 13.19

M-P .05 critical value 37.42 37.42 37.42 37.42 37.42 37.42 37.42 37.42

Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

Anderson-Rubin tests for joint null of orthogonality and non-significance of endogenous regressors.

F-stats above the critical value reject null of weak identification.

Note: OLS and IV estimates of the impact of automated robots installations on sorting, computed at the

province level and estimated through the finite-mixture model. Controls include three quartiles of two-digit

sector HHI for employment shares - HHI25, HHI50 and HHI75. Covariates include the share of workforce

employed in the manufacturing and construction macro-sectors. Finally, macro-area and two-year period

fixed effects are included either separately or interacted. For the IV estimates we employ two shift-share

instruments - in columns (5) to (8) we exploit robot information for Europe, US and Japan; in columns (9)

to (12) we exclude Europe from the instrumental variable construction. The sample includes the automobile

industry.

As a parallel check, we repeat the estimation by employing as dependent variable the

covariance term of decomposition (3). This too provides a clear measure of worker-firm

complementarity and directly feeds into between firm wage inequality. For brevity we
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Table 6: Impact of Automated Robots on Sorting - Excluding Automobile Industry

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

VARIABLES OLS OLS OLS OLS IV IV IV IV IV2 IV2 IV2 IV2

New Robots 0.0760*** 0.114*** 0.102*** 0.101*** 0.0772*** 0.0859*** 0.0802*** 0.0854*** 0.0679** 0.182*** 0.141*** 0.164***

(0.0107) (0.0204) (0.0177) (0.0176) (0.0115) (0.0212) (0.0191) (0.0182) (0.0323) (0.0559) (0.0511) (0.0449)

Observations 937 937 937 937 937 937 937 937 937 937 937 937

R2 0.285 0.589 0.611 0.648 0.285 0.588 0.610 0.647 0.285 0.582 0.608 0.642

Period FEs No Yes Yes No No Yes Yes No No Yes Yes No

Macroarea FEs No No Yes No No No Yes No No No Yes No

Macroarea x Period FEs No No No Yes No No No Yes No No No Yes

Mincer No No No No No No No No No No No No

A-R p value 9.44e-11 9.44e-05 4.93e-05 1.01e-05 0.0520 0.00303 0.0114 0.00135

M-P F stat 4362 1890 1899 1747 219.1 168.1 154.8 162.7

M-P .05 critical value 37.42 37.42 37.42 37.42 37.42 37.42 37.42 37.42

Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

Anderson-Rubin tests for joint null of orthogonality and non-significance of endogenous regressors.

F-stats above the critical value reject null of weak identification.

Note: OLS and IV estimates of the impact of automated robots installations on sorting, computed at the

province level and estimated through the finite-mixture model. Controls include three quartiles of two-digit

sector HHI for employment shares - HHI25, HHI50 and HHI75. Covariates include the share of workforce

employed in the manufacturing and construction macro-sectors. Finally, macro-area and two-year period

fixed effects are included either separately or interacted. For the IV estimates we employ two shift-share

instruments - in columns (5) to (8) we exploit robot information for Europe, US and Japan; in columns (9)

to (12) we exclude Europe from the instrumental variable construction. The sample excludes the automobile

industry.

report here the results excluding the automobile industry. Appendix C.2 reports additional

robustness checks. Table 7 shows that the coefficient of interest is positive and significant in

this case too. Under our preferred specification (column 8), if we were to bring a province

from the 25th to the 75th percentiles of robot installations per worker, the covariance term

would increase by one-third of its standard deviation.

The results for segregation are obtained from regression (12) using as dependent variable

instead of sorting the following segregation index:15:

segregation score =
var(θ̄j)

var(θi)
(13)

which measures the share of wage dispersion due to similar worker types working together in

the same firm class. On average across Italian provinces, the segregation score is about 18%

(see Table 13 in the Appendix), a value in line with the existing estimates for the US ranging

from 16% to 25% across the years.

Table 8 shows that the coefficient of interest is positive and significantly different from zero.

15 See also (Song et al. 2019).
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Table 7: Impact of Automated Robots on Covariance
Excluding Automobile Industry

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

VARIABLES OLS OLS OLS OLS IV IV IV IV IV2 IV2 IV2 IV2

New Robots, without automobile sector = L, 0.000866 0.0130*** 0.0124*** 0.0121*** 0.00142 0.0104*** 0.0101*** 0.00986*** 0.00549 0.0201*** 0.0183*** 0.0218***

(0.00123) (0.00285) (0.00272) (0.00288) (0.00122) (0.00296) (0.00290) (0.00294) (0.00354) (0.00726) (0.00696) (0.00648)

Observations 937 937 937 937 937 937 937 937 937 937 937 937

R2 0.278 0.376 0.381 0.415 0.278 0.375 0.380 0.414 0.263 0.368 0.376 0.401

Period FEs No Yes Yes No No No No No No No No No

Macroarea FEs No No Yes No No No No No No No No No

Macroarea x Period FEs No No No Yes No No No No No No No No

Mincer No No No No No No No No No No No No

A-R p value 0.250 0.000746 0.000824 0.00154 0.135 0.00947 0.0143 0.00245

M-P F stat 4362 1890 1899 1747 219.1 168.1 154.8 162.7

M-P .05 critical value 37.42 37.42 37.42 37.42 37.42 37.42 37.42 37.42

Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

Note: OLS and IV estimates of the impact of automated robots installations on covariance, cov(θ̄j , ψj(i,t),

computed at the province level. Controls include three quartiles of two-digit sector HHI for employment

shares - HHI25, HHI50 and HHI75. Covariates include the share of workforce employed in the manufacturing

and construction macro-sectors. Finally, macro-area and two-year period fixed effects are included either

separately or interacted. For the IV estimates we employ two shift-share instruments - in columns (5) to (8)

we exploit robot information for Europe, US and Japan; in columns (9) to (12) we exclude Europe from the

instrumental variable construction. The sample excludes the automobile industry.

For brevity we report again here the results excluding the automobile industry. Additional

robustness checks can be found in Appendix C.2. Under our preferred specification (column

8), if we were to bring a province from the 25th to the 75th percentiles of robot installations

per worker, the segregation score would increase by 3.5 percentage points (half its interquartile

range).

Overall, our findings support the conclusion that robot adoption increases wage inequality

by fostering both horizontal and vertical task specialization across firms. On the one hand,

in local economies where robot penetration has been more pronounced, workers performing

similar tasks have disproportionately clustered in the same firms (‘segregation’). On the

other hand, such clustering has been characterized by the concentration of higher earners

performing more complex tasks in firms paying higher wages (‘sorting’). These firms are

more productive and poach more aggressively.
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Table 8: Impact of Automated Robots on Segregation
Excluding Automobile Industry

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

VARIABLES OLS OLS OLS OLS IV IV IV IV IV2 IV2 IV2 IV2

New Robots -0.0180* 0.109*** 0.100*** 0.0928*** -0.0396*** 0.0899*** 0.0992*** 0.0823*** -0.00125 0.241*** 0.183*** 0.153***

(0.00982) (0.0184) (0.0148) (0.0152) (0.0104) (0.0196) (0.0171) (0.0158) (0.0274) (0.0443) (0.0353) (0.0353)

Observations 937 937 937 937 937 937 937 937 937 937 937 937

R2 0.354 0.466 0.584 0.650 0.350 0.465 0.584 0.650 0.352 0.432 0.571 0.644

Period FEs No Yes Yes No No Yes Yes No No Yes Yes No

Macroarea FEs No No Yes No No No Yes No No No Yes No

Macroarea x Period FEs No No No Yes No No No Yes No No No Yes

Mincer No No No No No No No No No No No No

First-stage F 4362 1890 1899 1747 219.1 168.1 154.8 162.7

Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

Note: OLS and IV estimates of the impact of automated robots installations on covariance, cov(θ̄j , ψj(i,t),

computed at the province level. Controls include three quartiles of two-digit sector HHI for employment

shares - HHI25, HHI50 and HHI75. Covariates include the share of workforce employed in the manufacturing

and construction macro-sectors. Finally, macroarea and two-year period fixed effects are included either

separately or interacted. For the IV estimates we employ two shift-share instruments - in columns (5) to (8)

we exploit robot information for Europe, US and Japan; in columns (9) to (12) we exclude Europe from the

instrumental variable construction. The sample excludes the automobile industry.

5. A Search Model with Worker-Firm

Complementarities

Our empirical findings can be rationalized through the lens of a dynamic search model in

which within an occupation robot adoption strengthens the complementarities between firm

classes and worker types. For the model to be consistent with the finite-mixture specification

(5), its predicted cross-sectional distribution of wages should be expressible in terms of a joint

distribution of worker characteristics, firm characteristics, and their correlation across firm-

worker matches. Moreover, to be consistent with the identification of those characteristics

through movers, the model has to predict firm-to-firm worker mobility. Finally, to generate

within-firm-class wage dispersion for any given worker type, the model has to feature some

randomness in the outcome of wage negotiation.

A canonical model with all these properties has been proposed by (Cahuc et al. 2006), which

extends previous work by (Postel-Vinay and Robin 2002) to allow for a bargaining parameter

regulates the impact of the randomness on wage negotiation outcomes. The model generates
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this randomness through search frictions in the presence of two-sided heterogeneity, rent

sharing, and firm-to-firm worker mobility due to on-the-job search and employee poaching.

Unemployed workers negotiate with a single employer in a conventional way, but when

an employed worker receives an outside job offer, a three-player bargaining process starts

between the worker, his original employer and the employer who has made the outside

offer. The bargaining process follows an infinite-horizon alternating-offers bargaining game

à la (Rubinstein 1982), which links the share of the match surplus a worker obtains from

negotiation to other search friction parameters. A firms offer a worker a wage that depends

on his types. It can counter the offer the worker receives from another firm. If it does

so, the firm makes take-it-or-leave-it counteroffers. If the worker’s negotiation fails with

both firms, he continues in his job at the preexisting terms. Wage contracts are long-term.

They can be renegotiated only with mutual consent, which rules out wage cuts. There is

no endogenous firing motive as an existent contract must be profitable and nothing can

happen that may turn a profitable contract into an unprofitable one. Workers and firms have

complete information. In particular, while matching is random, they know each other’s types

and classes. These are, therefore, unobserved only to the econometrician.

For our purposes, a shortcoming of the setup in (Postel-Vinay and Robin 2002) and (Cahuc

et al. 2006) is that it predicts that the within-firm-class distribution of worker types in a

given occupation is the same for all firm classes. In other words, there is neither sorting or

segregation of worker types across firm classes that may affect the wage distribution. Hence,

any observed variation in the within-firm-class distribution of worker types across firm classes

has to be explained in terms of different occupational composition. This speaks to Section

4.3, where we discussed the relations of firm classes and worker types to observable firm and

worker characteristics.

Occupational composition is not the only possible explanation of no segregation and no

sorting. As discussed by (Postel-Vinay and Robin 2002) and (Cahuc et al. 2006), their

setup could be modified to deliver within-firm-class distribution of worker types across firm

classes even abstracting from occupational composition. Appropriate modifications that

could lead to segregation and sorting include removing the assumptions of constant returns
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to worker ability, scalar heterogeneity, and undirected search. We now show that the simplest

modifications that would allow the canonical model to rationalize our empirical findings

concern the marginal productivity of a firm-worker match and the arrival rate of outside

offers to employed workers.

5.1. Environment

Consider the labor market for an occupation, in which an exogenous measure M of atomistic

workers face a continuum of competitive firms, with mass normalized to 1, producing a single

multipurpose good, with price also normalized to 1. Time is continuous. The market is

populated by infinitely lived risk neutral workers and firms. Workers are heterogenous in their

characteristics x, which are distributed according to a time-invariant distribution g(x) with

support [x, x]. Firms are heterogenous in their own characteristics y, which are distributed

according to a time-invariant distribution f(y) with support [y, y]. Hence, x and y correspond

to the ‘latent’ worker types and firm classes of the empirical finite mixture model. For

later use we also define the cumulative function F (y) and its complement F (y) = 1− F (y).

Workers maximize utility and firms minimize costs intertemporally. Workers and firms make

neither saving nor investment decisions, and spend all their earnings in every period. Both

workers and firms discount the future at a rate ρ.

Due to search frictions, a worker can be matched with a firm (‘employed’) or unmatched

(‘unemployed’). In both cases the worker searches for new job offers. The Poisson arrival

rates of job offers are λo and λ1(x) for unemployed and employed workers respectively. They

are strictly smaller than one due to search frictions, which gives labour market power to

firms. While the arrival rate for the unemployed does not depend on worker type, the arrival

rate for the employed is an increasing function of worker type: λ′1(x) ≥ 0. Higher x-type

workers receive (weakly) more offers in any given interval of time. The limit case λ′1(x) = 0

is the one assumed by (Postel-Vinay and Robin 2002) and (Cahuc et al. 2006). Firm-worker

matches are separated exogenously at a Poisson rate δ, which replenishes the unemployed

pool, or endogenously by poaching, which generates firm-to-firm worker flows.

A match produces a flow surplus every period determined by the match’s marginal
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productivity in supplying the multipurpose good. As the price of this good is normalized

to 1, a match’s surplus and its marginal productivity coincide. We use s(x, y) to denote

the match surplus between a x-type worker and a y-class firm with s(x, y) > 0, sx(x, y) > 0

and sy(x, y) > 0. We capture complementarities between worker types and firm classes

by assuming (weak) log-supermodularity: sxy(x, y) ≥ 0. A common functional form used

in the literature (see, e.g., Hagedorn, Law and Manovskii, 2017) has constant elasticity of

substitution:

s(x, y) =
(
xξ + yξ

) 2
ξ (14)

which is strictly log-supermodular (log-submodular) for ξ < 0 (ξ > 0), with its degree

of modularity increasing with the absolute value of ξ. In the limit case of ξ going to 0,

(14) converges to the Cobb-Douglas match marginal productivity in (Postel-Vinay and

Robin 2002) and (Cahuc et al. 2006), s(x, y) = xy, which is neither log-supermodular nor

log-submodular.16 While we will use the functional form (14) as an example that facilitates

the comparison with (Postel-Vinay and Robin 2002) and (Cahuc et al. 2006), the results that

follow will be derived for any s(x, y) satisfying the aforementioned properties.

5.2. Sharing Rules and Value Functions

Let U(z) = z denote the instantaneous utility of a worker earning a flow of income z, and let

V (x,w, y) denote the lifetime utility of a x-type worker when employed at y-class firm at

wage w with match surplus s(x, y). Subsequent notation and derivations can be simplified by

modelling unemployment as employment in a ‘virtual firm’ in ‘virtual class’ b > 0, paying an

unemployed worker a benefit equal to the entire match surplus s(x, b). The lifetime utility of

an unemployed x-type worker x is then given by V0(x) ≡ V (x, s(x, b), b).

A y-class firm is able to hire an unemployed x-type worker only if the match is productive

enough to at least compensate him for foregone unemployment income, which by (14) requires

y ≥ b. Therefore, for the worker to prefer employment in any firm class to unemployment,

the lower bound of the support of the distribution of firm classes has to be no less than b, i.e.

16 The CES function (14) is assumed to be homogeneous of degree 2 to obtain exactly the Cobb-Douglas
function used by (Postel-Vinay and Robin 2002) and (Cahuc et al. 2006) as ξ goes to 0.
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y ≥ b. Under this condition, any firm in any class is willing to hire any x-type unemployed

worker when it meets him on the search market. This implies that, whenever an unemployed

worker of any type and a firm in any class meet, they sign a contract. This is based on

an agreement on the wage reached through bargaining. As shown by (Cahuc et al. 2006),

the bargaining process delivers the generalized Nash-bargaining solution, where the worker

receives a constant share η ∈ (0, 1) of the match rent. To at least compensate the worker

for foregone unemployment income, the firms offers him the wage φ0(x, y) ≡ φ(x, b, y) that

solves

V (x, φ0(x, y), y) = V0(x) + η [V (x, s(x, y), y)− V0(x)]

where V (x, φ0(x, y), y) is the unemployed worker lifetime utility once hired, V0(x) is his

threat point given by his lifetime utility as unemployed, and V (x, s(x, y), y) is the maximum

lifetime utility the worker would achieve by extracting the entire match surplus from the

firm. Accordingly, the value function of an unemployed x-type worker can be stated as

ρV0(x) = s(x, b) + λo

∫ y

yinf

η [V (x, s(x, y′), y′)− V0(x)] dF (y′)]

given that he receives offers at Poisson arrival rate λ0 and the offerer’s firm class y′ cannot

fall short of the value yinf such that V (x, s(x, yinf), yinf) = V0(x). If there is free entry and

exit of firms in the search market, then yinf = y holds, which we assume henceforth.

Turn now to employed workers and consider a x-type worker currently employed by a

y-class firm. When the worker receives an offer from another firm in class y′, he starts

bargaining with both firms. There are three outcomes. A y′-class firm is able to poach the

worker only if their match is productive enough to at least compensate him for foregone

income at the current employer. If the poacher belongs to a higher class than the employer’s

(y′ < y), competition between them can be seen as an auction where the bidder with the

higher valuation wins and pays the second price. The winner is, therefore, the poacher

which is forced by the auction to match the current employer’s highest feasible bid s(x, y).

This is valued by the worker at V (x, s(x, y), y), which becomes the fallback position for the

negotiation game that the worker and the poacher subsequently play. As the firm has to
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at least compensate the worker for the foregone income implied by the employer’s bid, the

poacher offers him the wage φ(x, y, y′) that solves:

V (x, φ(x, y, y′), y′) = V (x, s(x, y), y) + η [V (x, s(x, y′), y′)− V (x, s(x, y), y)] (15)

where V (x, φ(x, y, y′), y′) is the worker lifetime utility once hired by the y′-class poacher,

V (x, s(x, y), y) is his threat point given by his lifetime utility at the current employer, and

V (x, s(x, y′), y′) is the maximum lifetime utility the worker would achieve by extracting the

entire match surplus from the poacher. Hence, when the worker meets a y′-class poacher, the

first outcome is that, for y < y′ ≤ y, the x-type worker moves to y′ and is paid φ(x, y, y′).

If the poacher does not belong to a higher class than the current employer’s (y′ ≤ y),

the winner of the auction is the current employer, which may or may not be forced by the

auction to match the poacher’s highest feasible bid s(x, y′). This is valued by the worker

at V (x, s(x, y′), y′), which becomes the fallback position for the negotiation game that the

worker and the current employer play. As the current employer has to at least compensate

the worker for the foregone income implied by the poacher’s bid, it offers him the wage

φ(x, y′, y) that solves

V (x, φ(x, y′, y), y′) = V (x, s(x, y′), y′) + η [V (x, s(x, y), y)− V (x, s(x, y′), y′)] (16)

where V (x, φ(x, y′, y), y′) is the worker lifetime utility if he chooses the current y-class

employer to the y′-class poacher, V (x, s(x, y′), y′) is his threat point given by his lifetime

utility at the poacher, and V (x, s(x, y), y) is the maximum lifetime utility the worker would

achieve by extracting the entire match surplus from the employer. The employer has to

renegotiate with the worker only if the current wage w falls short of the poacher’s offer, that

is, only if w < φ(x, y′, y) holds. As in (Cahuc et al. 2006), the φ(x, y′, y) that solves (16), is

increasing in y′ and thus there exists a unique threshold level for y′ solving w = φ(x, y′, y)

such that w < φ(x, y′, y) holds for y′ > q(x,w, y) and w > φ(x, y′, y) holds for y′ < q(x,w, y).

We use q(x,w, y) to denote this threshold as the solution to w = φ(x, q, y). Hence, for

y < y′ ≤ y, there are two additional outcomes when the worker meets a y′-class poacher.
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For q(x,w, y) < y′ ≤ y, the worker stays with the current employer and his wage rises to

φ(x, y′, y), whereas, for y ≤ y′ ≤ q(x,w, y), the worker stays with the current employer and

his wage is unchanged.

Given the three possible outcomes, the value function of a x-type worker employed by a

y-type firm at wage w can be stated as follows:

ρV (x,w, y) = w + δ[V0(x)− V (x,w, y)] (17)

+ λ1(x)

[∫ y

q(x,w,y)

[ηV (x, s(x, y), y) + (1− η)V (x, s(x, y′), y′)] dF (y′) (18)

+

∫ y

y

[ηV (x, s(x, y′), y′) + (1− η)V (x, s(x, y), y)] dF (y′)

−
∫ y

q(x,w,y)

V (x,w, y)dF (y′)

]

as he receives an offer from a poacher at Poisson arrival rate λ1(x), accepts the offer for

y < y′ ≤ y with bargaining outcome (15), rejects the offer and stays with the current employer

at higher wage for q(x,w, y) < y′ ≤ y with renegotiation outcome (16), and stays with the

current employer at the pre-existing wage for y ≤ y′ ≤ q(x,w, y).

5.3. Wage Determination with Complementarities

Following (Cahuc et al. 2006), equation (17) can be solved to obtain the wage of a x-type

worker who, after bargaining with two alternative firms y and y′ with y′ < y, has decided to

work for the former. His contract is such that his wage equals the share of match surplus

s(x, y) he would appropriate from the y-class firm in the absence of on-the-job search (with

threat point s(x, y′) given by the highest possible offer of the y′-class firm) plus the option

value of differential income gains from mobility in the y-class firm with respect to the y′-firm:17

φ(x, y′, y) = s(x, y)− (1− η)

(∫ y

y′

ρ+ δ + λ1(x)F (p)

ρ+ δ + λ1(x)ηF (p)
sy (x, p) dp

)
(19)

17 See Appendix D.1 for derivation.
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The option implies the possibility that a worker accepts a lower wage today against higher

expected wage increases in the future. As the worker is paid a wage resulting from a bargain

between the worker and two alternative employers, the cross-sectional distribution of wages

predicted by the model is driven by three aspects: a worker type, employer class, and, because

of search frictions, a statistical summary of the last random wage mobility the worker enjoyed.

An analogous expression applies to unemployed workers, for whom the wage is determined

by competition between a y-class firm and a ‘virtual’ b-class employer with b ≤ y:

φ0(x, y) ≡ φ(x, y, y) = s(x, y)− (1− η)

(∫ y

y

ρ+ δ + λ0F (p)

ρ+ δ + λ0ηF (p)
sy (x, p) dp

)
(20)

Expression (19) is the theoretical counterpart of the finite-mixture specification (5).

Under the assumptions of (Cahuc et al. 2006), we have Cobb-Douglas surplus s(x, y) = xy

(and thus sy(x, y) = x) and offer arrival rate λ1(x) = λ1 independent of worker type. The

logarithm of (19) becomes:

lnφ(x, y′, y) = lnx+ lnφ(1, y′, y)

The model thus predicts a log-linear decomposition of wages that separates the effect of

unobserved worker characteristics on one side (lnx) and the effect of unobserved firm

characteristics as well as of recent labor market history on the other (lnφ(1, y′, y)). The

effect of history is independent of the worker type because (as we will show in the next

section) employers do not sort workers by their characteristics. In contrast, history is not

independent of firm class as higher-class firms suffer less from labor market competition.

Firms’ bargaining power is key for this feature. If firms had no bargaining power (η = 1),

firm and worker effects would separable because labor market history does not matter when

the worker appropriates the whole surplus up front.

If the offer arrival rate is a function of worker type, the log of expression (19) is:

lnφ(x, y′, y) = ln x+ ln

(
y − (1− η)

(∫ y

y′

ρ+ δ + λ1(x)F (p)

ρ+ δ + λ1(x)ηF (p)
dp

))
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Labor market history now depends on both firm class and worker type in a non-separable way.

In particular, as higher worker types receive offers more often (λ′1(x) > 0), they climb the

firm-class ladder faster, and thus there is a higher probability of finding them in higher class

firms (with η < 1 the ratio inside the integral is an increasing function of x). Hence, allowing

the offer arrival rate to be higher for higher type workers generates sorting and segregation,

which affect wage variance through the positive correlation of firm and worker characteristics.

Firms’ bargaining power is again key for this result. If the firm had no bargaining power

(η = 1), we would be back to the separable case.

For λ′1(x) > 0 and s(x, y) = xy, the effect of worker type cannot be separated from the

effects of firm class and labor market history. Another reason why they cannot be separated is

the presence of production complementaries between firm and work characteristics. Consider

λ1(x) = λ1, s(x, y) =
(
xξ + yξ

) 2
ξ and thus sy(x, y) = 2yξ−1

(
xξ + yξ

)−(ξ−2)/ξ
). Expression

(19) evaluates to:

φ(x, y′, y) =
(
xξ + yξ

) 1
ξ − (1− η)

(∫ y

y′

ρ+ δ + λ1F (p)

ρ+ δ + λ1ηF (p)
2yξ−1

(
xξ + yξ

)−(ξ−2)/ξ
dp

)

In this case sorting and segregation come from two sources. First, even in the limit case

in which the firm has no bargaining power (η = 1) and the worker extracts all surplus

up front, the surplus function transmits its log-supermodularity to the wage. Second, as

log-supermodularity sxy(x, y) ≥ 0 implies that higher type workers receive disproportionately

higher offers, these workers climb the firm-class ladder faster, and thus they are more likely to

be found in higher class firms (the term sy(x, y) = 2yξ−1
(
xξ + yξ

)−(ξ−2)/ξ
inside the integral

is an increasing function of x). Hence, the positive impact of robot adoption on sorting

and segregation we have found in the data is consistent with robot adoption strengthening

production complementaries between worker types and firm classes when higher type workers

are more likely to receive job offers. The stronger those complementarities are, the higher

the relative importance of between versus within firm-class wage dispersion.
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5.4. Wage Distribution with Complementarities

The wage distribution can be derived from the steady state equilibrium flow conditions. We

start by defining a few variables that enter the definition of the flows. We use G(w | x, y) to

denote the share of x-type workers employed by y-class firms who are paid a wage no higher

than w. We define u as the share of unemployed workers, (1− u) as the share of employed

workers searching on the job, and `(x, y) as the density of x-type workers employed by y-class

firms. Due to sorting, this density is not necessarily given by the product of the population

densities of worker types g(x) and firm classes f(y).

In steady state the outflows and the inflows of workers in the different worker pools have

to balance. These worker pools are the pool of unemployed workers and several pools of

employed workers that differ in terms of employee type, employer class and wage, given that

on-the-job search allows two identical workers hired by the same firm to be paid differently.

In each period a share δ of firm-worker matches (1− u)M is destroyed and a share λo of the

unemployed uM finds a job. Hence, for the unemployed pool to be in steady state, we need

λou = δ(1− u). As for the employed pools, consider the pool of x-type workers employed by

y-class firms at wage no higher than w. On the outflow side, a share G(w | x, y)`(x, y)(1− u)

of them exits either because they are laid off (at separation rate δ) or because they obtain a

wage rise. The latter event happens to a share λ1(x)F (q(x,w, y)) of workers, as a share λ1(x)

of them receives an offer and a share F (q(x,w, y)) of those receiving an offer either leaves to

another firm or negotiates a wage rise with the current employer. On the inflow side, a share

g(x) of unemployed workers are of type x. A share λ0 of them receives an offer, which they

accept, and a share f(y) of the offers comes from y-class firms. In addition, some workers

are poached from other firms. A share f(y) of these firms is in class y, a share λ1 (x) of their

employees receives an offer. The share of x-type workers accepting offers from y-class firms is∫ q(x,w,y)

y
`(x, p)dp. Hence, for the outflow to equal the inflow the following condition has to

hold:

(
δ + λ1 (x)F (q(x,w, y))

)
G(w | x, y)`(x, y) =

[
δg(x) + λ1 (x)

(∫ q(x,w,y)

y

`(x, p)dp

)]
f(y)

(21)

53



where we have imposed also balanced flows for the uemployed:λou = δ(1− u).

Condition (21) applies to all x-type workers matched with y-class firms at wage lower or

equal to w. Consider now the subset (x,w, y) consisting of workers just at the margin of

those who do not get a pay rise. A worker in this subset is an employee of a y-type firm who

receives an offer from a poaching firm in class y′ = q. As already discussed, competition

between the current employer and the poacher implies that the current employer has to

pay as wage the entire surplus that the employee would generate if hired by the poacher:

w = φ(x, q, y) = φ(x, y′, y) = s(x, y′). If the poacher is itself a y-firm, then y′ = y implies

w = s(x, y), and thus also G(w = s(x, y) | x, y) = 1 given that no worker can be paid more

than the match surplus. In other words, Bertrand competition for a x-type worker between

two y-class firms transfers the entire match surplus from the employer to the employee as

wage payment. In this case, condition (21) simplifies to:

(
δ + λ1 (x)F (y))

)
`(x, y) =

[
δg(x) + λ1 (x)

(∫ y

y

`(x, p)dp

)]
f(y)

which, after integration by parts, can be solved for the density of x-type workers employed

by y-class firms:18

`(x, y) =
1 + λ1(x)

δ(
1 + λ1(x)

δ
F (y)

)2 g(x)f(y) (22)

Integrating (22) gives the corresponding cumulative density:

L(x, y) =

∫ y

y

`(x, p)dp =
F (y)

1 + λ1(x)
δ
F (y)

(23)

Using (22) and (23) allows us to solve (21) for the share of x-type workers employed by

y-class firms who are paid a wage no higher than w:

G(w | x, y) =

(
1 + λ1(x)

δ
F (y)

1 + λ1(x)
δ
F (q(x,w, y))

)2

(24)

with w ∈ [φ0(x, y), s(x, y)]. The threshold q(x,w, y) is an increasing function of w.19 This

18 See Appendix D.2 for further details.
19 This comes from the definition of q(x,w, y) as the solution to φ(, q, p) = w and the fact that the φ(x, y′, y)

solution is increasing in x and y′ (but not necessarily in y). See (Cahuc et al. 2006) for details.
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implies that, as w rises, G(w | x, y) also rises, reaching 1 for w = s(x, y) as firms cannot pay

workers more than match surplus. Again, q(x,w, y) = y holds for w = s(x, y).

The following remarks are in order. On the one hand, with λ1 (x) = λ1, (22) becomes

`(x, y) = g(x)`(y)

where

`(y) =
1 + λ1

δ(
1 + λ1

δ
F (y)

)2f(y)

is the density of workers in y-type firms. In this case, the density `(x, y) of x-type workers

employed by y-class firms can be decomposed into two multiplicative components, one of

which is a function of x only while the other is a function of y only. Accordingly, the

composition of employment in terms of worker types is the same for all firm classes. In other

words, within an occupation there is no sorting of worker types across firm classes. This

result holds for any functional form of match surplus s(x, y). Therefore, it is unaffected

by production complementarities. This does not mean, however, that also G(w | x, y) is

unaffected. Stronger complementarities increase q(x,w, y) as well as both φ0(x, y) and s(x, y),

but the latter more than the former, fostering within-firm-class wage dispersion despite

unchanged employment composition.20

On the other hand, when λ1 (x) depends on worker type , (22) is not separable into

worker-type and firm-class components. In this case, λ′1 (x) > 0 generates sorting and

segregation: in higher firm classes the composition of employment is skewed towards higher

worker types. The more so, the larger λ′1 (x) is and the stronger the complementaries. In

this case, stronger complementarities and lower relative search frictions for higher worker

types promote within-firm-class wage dispersion also through the change of employment

composition across firm classes.

20 In the case of η = 0, even though the three components of the steady-state earnings distribution are
not independent, (Postel-Vinay and Robin 2002) decompose the variance of wages into three separate
components. This is achieved by allocating the total within-firm variance of wages not explained by
worker type to market frictions and all the between-firm variance to the firm class.
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6. Conclusion

Leveraging the geographic dimension of a large administrative panel on employer-employee

contracts, we have studied the impact of robot adoption on wage inequality through changes in

worker-firm assortativity. Using recently developed methods to correctly and robustly identify

firm unobserved characteristics, firm unobserved characteristics and their combination, we

have linked worker-firm sorting and worker segregation across firms to robot adoption across

local economies.

We have found that robot adoption increases wage inequality by fostering both horizontal

and vertical task specialization across firms. In local economies where robot penetration has

been more pronounced, workers performing similar tasks have disproportionately clustered

in the same firms (‘segregation’). Moreover, such clustering has been characterized by the

concentration of higher earners performing more complex tasks in firms paying higher wages

(‘sorting’). These firms are more productive and poach more aggressively.

We therefore conclude that our econometric analysis reveals the presence of both ‘routine-

biased technological change’ (RBTC), whereby new technology decreases the relative demand

for workers in traditional routine tasks, and ‘core-biased technological change’ (CBTC),

whereby new technology requires workers with specialized knowledge independently of their

tasks being more or less routine intensive.

We have rationalized these findings through a simple extension of a well-established class of

models with two-sided heterogeneity, on the job search and rent sharing through a generalized

Nash bargaining process under Bertrand competition in employee poaching.
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A. Overlapping intervals - Rolling Windows

To increase the number of estimated sorting parameters we employ rolling windows. Figure

14 gives a graphic representation of our estimation intervals and compares them to the ones

envisaged in (Bonhomme et al. 2019). In each interval we keep only workers who have

a contract each year and firms that survive as well for the whole period. This restricts

considerably the sample size. Furthermore, as in (Bonhomme et al. 2019) movers are allowed

to change employer only between the second and third year (signalled by white dots). Every

time we define a new interval and consider the possibility of new entrants in the labor

market. Hence, we reclassify workers and firms again, so as to consider those who survive in

the following four years. This operation encompasses a larger quantity of job movements,

indicated by a gray dot. If we were to use non-overlapping intervals, sorting would be

computed on the whole 4-year interval (the red portion of each segment). Our rolling

windows, as exemplified in Panel (b), accommodate larger job movements every two years.

Sorting is then computed only for the first two of each interval (once again, the red portion

of each segment). This allows us to have a clear measure of sorting which is frequently

updated, and informed by sizeable job movements and recent k-means clusterization (which

we implement at the start of each period).
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Figure 14: Estimation Intervals

1983 1987 1991 1995 1999 2003

(a) Intervals following (Bonhomme et al. 2019)

1983 1987 1991 1995 1999 2003

(b) Intervals using Rolling-Windows

Note: Representation of the rolling estimation windows. Movers are allowed to change employer only

between the second and third year (signalled by white dots). Every time a new interval starts. Workers and

firms are then reclassified to consider those who survive in the following four years.

B. Algorithm estimates - Other results

B.1. Workforce composition

The finite-mixture estimation algorithm delivers, prior to the Bayesian assignment, also the

composition of the workforce for each firm cluster. This represents the prior that inserted in

the Bayes’ rule 9. Figure 16 plots worker compositions for the interval 2005-2008. The plot

reveals sorting of workers in high wage bins to firms in high wage clusters.
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Figure 16: Workforce Composition, Mincer

(a) No Mincer (b) Mincer

Note: The figure plots for each firm cluster the relative representation of each worker type in the workforce.

Types and clusters are estimated using raw earnings (panel a) and Mincer wages (panel b)

B.2. Firm clusters

The exercise in 4 is a powerful display of the strength of the clustering approach. Here we

show that, using the full sample, the choice of the number of clusters does not matter for the

gap between sorting computed by baseline AKM and our two-step alternative. Indeed, it

remains fairly stable even upon using one thousand clusters, confirming that the approach -

by addressing the issue of low network connectedness - is able to uncover the true measure of

sorting. Clearly, one can also sense from Figure 18 that, as the number of clusters approaches

the number of individual firms populating the network, sorting measures will clearly converge

- what is interesting, it is the slow pace of such convergence.
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Figure 18: Testing different numbers of kmeans clusters

Note: Sorting measures for two-step AKM using K =5,10,20,50,100,1000 clusters are plotted against the

baseline AKM estimate.

Having established that the estimates are not over-reliant on the choice of K, one can

qualify each of the ten baseline firm clusters looking at the unconditional-mean table in 9.
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Table 9: Firm clusters - No Mincer

clus recap

clus1 clus2 clus3 clus4 clus5 clus6 clus7 clus8 clus9 clus10

mean wage 5.223 5.8 6.027 6.161 6.317 6.44 6.475 6.644 6.84 7.178

y 25 4.625 5.697 5.928 6.029 6.17 6.176 6.322 6.422 6.553 6.853

median wage 5.452 5.816 6.03 6.151 6.284 6.353 6.448 6.595 6.801 7.162

y 75 5.908 5.926 6.129 6.277 6.422 6.627 6.591 6.808 7.07 7.493

poach score .38 .452 .477 .51 .515 .552 .6 .62 .588 .598

lab intensity .408 .496 .443 .403 .308 .207 .298 .226 .216 .243

va worker 64.389 70.282 110.255 130.947 119.967 164.893 149.194 208.672 349.684 433.171

va sales .489 .562 .51 .47 .385 .287 .384 .37 .324 .314

share intangible .249 .23 .254 .262 .169 .237 .151 .255 .279 .345

size 12 13.5 14.9 21.2 28 32.6 39.3 63.3 52.5 35.9

trainee .026 .043 .036 .034 .023 .029 .013 .017 .022 .009

bluecollar .799 .847 .801 .73 .585 .491 .667 .391 .205 .065

whitecollar .168 .1 .153 .213 .353 .393 .274 .473 .555 .48

quadro .002 .001 .002 .007 .023 .049 .03 .077 .147 .295

executive .001 0 .001 .002 .005 .022 .008 .026 .06 .142

manuf .161 .247 .267 .338 .474 .592 .616 .663 .59 .43

constr .045 .067 .074 .055 .044 .023 .033 .019 .028 .023

serv .794 .686 .658 .606 .482 .386 .351 .317 .382 .547

age 36.4 38.8 39.1 39.4 41.8 41 42.9 42.9 42.5 43.2

northwest .29 .21 .23 .31 .35 .46 .4 .44 .46 .55

northeast .14 .14 .19 .25 .29 .31 .3 .3 .24 .11

center .21 .21 .22 .21 .19 .14 .16 .16 .17 .26

south .28 .33 .26 .17 .12 .07 .11 .07 .08 .05

islands .08 .1 .11 .07 .05 .02 .03 .04 .04 .04

share empl .006 .068 .138 .163 .172 .105 .117 .146 .068 .016

n firms 1562 15449 28416 23395 18806 9800 9113 7021 3975 1389

n workers 18699 208046 422146 496825 526604 319683 358326 444303 208681 49814

Note: Summarizing several variables characterizing the ten k-means firm clusters estimated in the 2005-2008

interval.
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B.3. Worker types

Table 10: Worker types - No Mincer

type recap

type1 type2 type3 type4 type5 type6

wage 5.84175 5.982744 5.972135 6.262899 6.643395 7.194921

trainee .113 .084 .075 .049 .014 .002

bluecollar .75 .711 .592 .578 .27 .063

whitecollar .124 .184 .101 .344 .627 .401

quadro 0 0 .03 .001 .068 .373

executive 0 0 .195 0 .001 .151

occ1 .001 .002 .161 .004 .022 .157

occ2 .019 .029 .053 .066 .185 .276

occ3 .066 .088 .074 .154 .311 .331

occ4 .118 .136 .094 .144 .146 .119

occ5 .132 .173 .186 .122 .096 .055

occ6 .242 .205 .13 .19 .121 .036

occ7 .131 .172 .089 .208 .081 .018

occ8 .292 .196 .213 .112 .038 .008

manuf .331 .33 .301 .465 .498 .507

constr .062 .066 .058 .058 .048 .033

serv .606 .603 .641 .477 .454 .461

age 35.735 36.312 38.995 37.364 40.026 43.475

northwest .269 .26 .35 .356 .434 .489

northeast .197 .205 .175 .277 .282 .258

center .198 .208 .191 .18 .166 .167

south .254 .237 .223 .131 .082 .063

islands .083 .091 .061 .056 .035 .023

n 190397 391889 22275 395429 122180 45090

share .1631145 .3357341 .0190832 .3387668 .1046725 .0386289

Note: Summarizing several variables characterizing the six worker grouped random effect estimated in the

2015-2018 interval.
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C. Last stage - Additional Results

C.1. Descriptive statistics

Table 11: Shift-share Robot Installations measure

n obs mean var p10 p25 p50 p75 p90

All sectors 1044 .6091146 .6139619 .0268438 .1690594 .4167585 .754465 1.295757

Without auto 1044 .2787364 .0664967 .0200644 .0466083 .2485207 .4219752 .584039

Only auto 984 .3505233 .566917 -.0415398 .0094493 .0864324 .3798713 .9880844

Note: Summarizing our alternative measures of automatization. More than half of all robot installations

come from the automobile industry; the relative measure also exhibits substantial variance, due to the widely

different employment shares in such sectors across provinces.

Table 12: Covariance measure

n obs mean var p10 p25 p50 p75 p90

No Mincer 1056 .0254638 .0001016 .0152654 .0192701 .0239352 .0303524 .0376067

Mincer 1056 .0184392 .0000493 .011137 .0141712 .0174062 .0215385 .0274435

Note: Summarizing our alternative measures of covariance, computed as twice the correlation between the

firm and worker fixed effects times the respective standard deviations.

Table 13: Segregation score measure

n obs mean var p10 p25 p50 p75 p90

No Mincer 1056 .4775343 .0083294 .3763741 .4147443 .4647163 .5293838 .5930381

Mincer 1056 .4163355 .0070687 .3325594 .3617232 .4035098 .4512173 .5118459

Note: Summarizing our alternative measures of segregation score, computed as the ratio between the variance

of the firm’s average worker fixed effect and the total variance of the worker fixed effect.

C.2. Alternative Specifications for Sorting

In this Section we report estimates for alternative specifications of Equation 12. We report

results for the case in which sorting is estimated based on the Mincer-residual and the results

for the case in which automated robots are exclusively installed in the automobile industry.
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C.2.1. Mincer Sorting - Automation Estimates

Table 14: Impact of Automated Robots on Sorting - Including Automobile Industry
(Mincer specification)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

VARIABLES OLS OLS OLS OLS IV IV IV IV IV2 IV2 IV2 IV2

New Robots 0.0108*** 0.00690*** 0.00691*** 0.00506** -0.0105** 0.00998*** 0.0109*** 0.0113*** 0.0353*** 0.00388 0.00179 -0.00148

(0.00232) (0.00228) (0.00231) (0.00209) (0.00422) (0.00339) (0.00351) (0.00325) (0.0121) (0.00792) (0.00826) (0.00761)

Observations 937 937 937 937 937 937 937 937 937 937 937 937

R2 0.140 0.553 0.574 0.641 0.100 0.553 0.573 0.638 0.087 0.553 0.572 0.638

Period FEs No Yes Yes No No Yes Yes No No Yes Yes No

Macroarea FEs No No Yes No No No Yes No No No Yes No

Macroarea x Period FEs No No No Yes No No No Yes No No No Yes

Mincer Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

A-R p value 0.00882 0.00288 0.00152 0.000335 0.000163 0.631 0.831 0.849

M-P F stat 546.9 344.9 333.4 327.7 13.36 13.54 12.36 13.19

M-P .05 critical value 37.42 37.42 37.42 37.42 37.42 37.42 37.42 37.42

Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

Anderson-Rubin tests for joint null of orthogonality and non-significance of endogenous regressors.

F-stats above the critical value reject null of weak identification.

Note: OLS and IV estimates of the impact of automated robots installations on sorting, corr(θ, ψj(i,t)),

computed at the province level. Controls include three quartiles of two-digit sector HHI for employment

shares - HHI25, HHI50 and HHI75. Covariates include the share of workforce employed in the manufacturing

and construction macro-sectors. Finally, macro-area and two-year period fixed effects are included either

separately or interacted. For the IV estimates we employ two shift-share instruments - in columns (5) to (8)

we exploit robot information for Europe, US and Japan; in columns (9) to (12) we exclude Europe from the

instrumental variable construction. The sample includes the automobile industry. Estimated sorting is based

on the Mincer residual.
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Table 15: Impact of Automated Robots on Sorting - Excluding Automobile Industry
(Mincer specification)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

VARIABLES OLS OLS OLS OLS IV IV IV IV IV2 IV2 IV2 IV2

New Robots -0.0532*** 0.0663*** 0.0632*** 0.0640*** -0.0602*** 0.0230 0.0262 0.0359* -0.102*** 0.104** 0.0798* 0.113***

(0.0107) (0.0199) (0.0182) (0.0188) (0.0106) (0.0202) (0.0190) (0.0194) (0.0320) (0.0522) (0.0483) (0.0429)

Observations 937 937 937 937 937 937 937 937 937 937 937 937

R2 0.156 0.560 0.579 0.647 0.155 0.556 0.576 0.646 0.134 0.557 0.579 0.643

Period FEs No Yes Yes No No Yes Yes No No Yes Yes No

Macroarea FEs No No Yes No No No Yes No No No Yes No

Macroarea x Period FEs No No No Yes No No No Yes No No No Yes

Mincer Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

A-R p value 2.71e-08 0.263 0.177 0.0767 0.000754 0.0620 0.118 0.0158

M-P F stat 4362 1890 1899 1747 219.1 168.1 154.8 162.7

M-P .05 critical value 37.42 37.42 37.42 37.42 37.42 37.42 37.42 37.42

Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

Anderson-Rubin tests for joint null of orthogonality and non-significance of endogenous regressors.

F-stats above the critical value reject null of weak identification.

Note: OLS and IV estimates of the impact of automated robots installations on sorting, corr(θ, ψj(i,t)),

computed at the province level. Controls include three quartiles of two-digit sector HHI for employment

shares - HHI25, HHI50 and HHI75. Covariates include the share of workforce employed in the manufacturing

and construction macro-sectors. Finally, macro-area and two-year period fixed effects are included either

separately or interacted. For the IV estimates we employ two shift-share instruments - in columns (5) to (8)

we exploit robot information for Europe, US and Japan; in columns (9) to (12) we exclude Europe from the

instrumental variable construction. The sample excludes the automobile industry. Estimated sorting is based

on the Mincer residual.

68



C.2.2. Automobile Robots - Automation Estimates

Table 16: Impact of Automated Robots on Sorting - Automobile Industry only (No
Mincer specification)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

VARIABLES OLS OLS OLS OLS IV IV IV IV IV2 IV2 IV2 IV2

New Robots 0.0176*** -0.00145 5.81e-05 -0.000239 0.00808** 0.00157 0.00406 0.00492 -0.00870 0.000393 0.00246 0.00582

(0.00295) (0.00269) (0.00268) (0.00276) (0.00389) (0.00379) (0.00375) (0.00389) (0.0119) (0.00870) (0.00898) (0.00840)

Observations 883 883 883 883 883 883 883 883 883 883 883 883

R2 0.263 0.574 0.605 0.641 0.258 0.573 0.604 0.640 0.222 0.574 0.605 0.639

Period FEs No Yes Yes No No Yes Yes No No Yes Yes No

Macroarea FEs No No Yes No No No Yes No No No Yes No

Macroarea x Period FEs No No No Yes No No No Yes No No No Yes

Mincer No No No No No No No No No No No No

A-R p value 0.0406 0.681 0.280 0.216 0.417 0.964 0.788 0.502

M-P F stat 308 339.5 329.4 331 11.23 14.19 12.93 13.63

M-P .05 critical value 37.42 37.42 37.42 37.42 37.42 37.42 37.42 37.42

Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

Anderson-Rubin tests for joint null of orthogonality and non-significance of endogenous regressors.

F-stats above the critical value reject null of weak identification.

Note: OLS and IV estimates of the impact of automated robots installations on sorting, corr(θ, ψj(i,t)),

computed at the province level and focusing solely on automobile industry. Controls include three quartiles

of two-digit sector HHI for employment shares - HHI25, HHI50 and HHI75. Covariates include the share of

workforce employed in the manufacturing and construction macro-sectors. Finally, macroarea and two-year

period fixed effects are included either separately or interacted. For the IV estimates we employ two shift-share

instruments - in columns (5) to (8) we exploit robot information for Europe, US and Japan; in columns (9)

to (12) we exclude Europe from the instrumental variable construction. The sample includes the automobile

industry. Estimated sorting is based on the raw earnings.
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Table 17: Impact of Automated Robots on Sorting - Automobile Industry only
(Mincer specification)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

VARIABLES OLS OLS OLS OLS IV IV IV IV IV2 IV2 IV2 IV2

New Robots 0.0178*** 0.00413* 0.00444** 0.00226 -0.00240 0.00667** 0.00752** 0.00707** 0.0552*** -0.00146 -0.00178 -0.00767

(0.00282) (0.00220) (0.00214) (0.00201) (0.00433) (0.00335) (0.00335) (0.00310) (0.0178) (0.00742) (0.00753) (0.00719)

Observations 883 883 883 883 883 883 883 883 883 883 883 883

R2 0.162 0.552 0.582 0.649 0.128 0.552 0.581 0.648 0.046 0.550 0.580 0.644

Period FEs No Yes Yes No No Yes Yes No No Yes Yes No

Macroarea FEs No No Yes No No No Yes No No No Yes No

Macroarea x Period FEs No No No Yes No No No Yes No No No Yes

Mincer Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

A-R p value 0.574 0.0454 0.0234 0.0220 7.32e-08 0.844 0.814 0.266

M-P F stat 308 339.5 329.4 331 11.23 14.19 12.93 13.63

M-P .05 critical value 37.42 37.42 37.42 37.42 37.42 37.42 37.42 37.42

Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

Anderson-Rubin tests for joint null of orthogonality and non-significance of endogenous regressors.

F-stats above the critical value reject null of weak identification.

Note:OLS and IV estimates of the impact of automated robots installations on sorting, corr(θ, ψj(i,t)),

computed at the province level and focusing solely on automobile industry. Controls include three quartiles

of two-digit sector HHI for employment shares - HHI25, HHI50 and HHI75. Covariates include the share of

workforce employed in the manufacturing and construction macro-sectors. Finally, macroarea and two-year

period fixed effects are included either separately or interacted. For the IV estimates we employ two shift-share

instruments - in columns (5) to (8) we exploit robot information for Europe, US and Japan; in columns (9)

to (12) we exclude Europe from the instrumental variable construction. The sample includes the automobile

industry. Estimated sorting is based on the Mincer residual.

C.2.3. Summary and Comparison of Estimates Across Specifications

We entertain in total six different specifications, by combining those with different automated

robot installations considered (whole economy, excluding automobile industry, automobile

industry only) and those with different measures of sorting (Mincer and non Mincer). For

each of these specifications we estimate positive coefficients. The presence of the automobile

industry drags down the point estimates. Its exclusion rises the economic impact on sorting,

but makes estimates less precise.21 The following graph plots our coefficient of interest across

specifications.

21 This is to be expected given the relatively lower variance that our shift-share measure for automation
exhibits without the automobile sector, as shown in Section C.
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Figure 19: Impact of Automation on Sorting, different specifications

Note: Coefficient of lagged automated robot installations with IV estimates, including interacted period and

area FEs - across different automation definitions and sorting computations.

C.3. Alternative dependent variables

The very same pattern concerning the automobile sector in terms of sorting can be found

when using covariance of worker and firm effects or segregation as dependent variables of our

last stage.
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Figure 20: Impact of Automation on Covariance, different specifications

Note: Coefficient of lagged automated robot installations under a specification based on an IV estimate,

which includes interacted period and area FEs - across different automation definitions and covariance

computations.

Figure 21: Impact of Automation on Segregation, different specifications

Note: Coefficient of lagged automated robot installations under a specification based on an IV estimate,

which includes interacted period and area FEs - across different automation definitions and segregation score

computations.
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D. Model Derivations

D.1. Wage Equation

The value function of a x-type worker employed by a y-type firm at wage w is:

ρV (x,w, y) = w + δ[V0(x)− V (x,w, y)] + λ1(x)

[∫ y

q(x,w,y)

(ηV (x, s(x, y), y) (25)

+ (1− η)V (x, s(x, p), p))dF (p) +

∫ y

y

(ηV (x, s(x, p), p)+

+(1− η)V (x, s(x, y), y))dF (p)−
∫ y

q(x,w,y)

V (x,w, y)dF (p)

]

Once integrated by parts, the term between square brackets evaluates to:

− F (y)V (x, s(x, y), y) + F (q)[ηV (x, s(x, y), y) + (1− η)V (x, s(x, q), q)]+ (26)

+ (1− η)

∫ y

q

F (p)
d

dp
V (x, s(x, p), p)dp+

+ F (y)V (x, s(x, y), y) + η

∫ y

y

F (p)
d

dp
V (x, s(x, p), p)dp− F (q)V (x,w, y)

where F (p) = 1 − F (p). Given that q(x,w, y) is the defined as the value of q that solves

w = φ(x, q, y), the sharing rule implies

V (x,w, y) = ηV (x, s(x, y), y) + (1− η)V (x, s(x, q), q) (27)

so that (26) simplifies to:

(1− η)

∫ y

q

F (p)
d

dp
V (x, s(x, p), p)dp+ η

∫ y

y

F (p)
d

dp
V (x, s(x, p), p)dp (28)

Substituting (28) into (25) entails:

(ρ+ δ)V (x,w, y) = w + δV0(x) + λ1(x)

[
(1− η)

∫ y

q(x,w,y)

F (p)
d

dp
V (x, s(x, p), p)dp (29)

+η

∫ y

y

F (p)
d

dp
V (x, s(x, p), p)dp

]
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Imposing w = s(x, y) and thus q(x, s(x, y), y) = y, equation (29) becomes:

(ρ+ δ)V (x, s(x, y), y) = s(x, y) + δV0(x) + λ1(x)η

∫ y

y

F (p)
d

dp
V (x, s(x, p), p)dp (30)

Differentiating the above with respect to y delivers:

d

dy
V (x, s(x, y), y) =

sy(x, y)

ρ+ δ + λ1(x)ηF (y)
(31)

Substituting (31) into (30) yields:

(ρ+ δ)V (x, s(x, y), y) = s(x, y) + δV0(x) + λ1(x)η

∫ y

y

sy(x, p)F (p)

ρ+ δ + λ1(x)ηF (y)
dp (32)

Furthermore, substituting (31) into (29) delivers:

(ρ+ δ)V (x,w, y) = w + δV0(x) + λ1(x)

[
(1− η)

∫ y

q(x,w,y)

sy(x, p)F (p)

ρ+ δ + λ1(x)ηF (y)
dp+ (33)

+η

∫ y

y

sy(x, p)F (p)

ρ+ δ + λ1(x)ηF (y)
dp

]

For w = φ(x, y′, y) with y′ ≤ y, (32) and (33) imply:

φ(x, y′, y) = ηs(x, y) + (1− η)s(x, y′)− λ1(x)(1− η)2

∫ y

y′

sy(x, p)F (p)

[ρ+ δ + λ1(x)ηF (p)]
(34)

φ(x, y′, y) = ηs(x, y) + (1− η)s(x, y′)− (1− η)2λ1(x)

∫ y

y′

sy (x, p)F (p)

ρ+ δ + λ1(x)ηF (p)
dp (35)

Using s(x, y′) = s(x, y)−
∫ y
y′
sy (x, p) dp, (35) can be restated in more compact firm as:

φ(x, y′, y) = s(x, y)− (1− η)

(∫ y

y′

ρ+ δ + λ1(x)F (p)

ρ+ δ + λ1(x)ηF (p)
sy (x, p) dp

)

which is expression (19) in the main text.
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D.2. Wage Distribution

Consider the balanced flows condition (21) for y′ = q and y′ = y. In this case, we have

w = s(x, y) and G(w = s(x, y) | x, y) = 1. The condition simplifies to:

(
δ + F (y)λ1 (x)

)
`(x, y) =

(
δg(x) + λ1 (x)

∫ y

y

`(x, p)dp

)
f(y) (36)

To intergrate by parts, define:

u =
(
δ + F (y)λ1 (x)

)
= [δ + (1− F (y))λ1 (x)] (37)

u′ = −λ1 (x) f(y)

v =

∫ y

y

`(x, p)dp

v′ = `(x, y)

Then, (36) can be restated as:

− δ

λ1 (x)
g(x)u′ = u′v + uv′

which can be intregrated to yield:

− δ

λ1 (x)
g(x)

∫ y

y

u′ =

∫ y

y

(u′v + uv′) = uv

Hence, recalling (37), we have:

δg(x)
(
1− F (y)

)
=
(
δ + F (y)λ1 (x)

) ∫ y

y

`(x, p)dp

which can be rewritten as:

∫ y

y

`(x, p)dp =
δg(x)

(
1− F (y)

)(
δ + λ1 (x)F (y)

) (38)

75



Plugging (38) into (36) and simplifying gives:

(
δ + F (y)λ1 (x)

)
`(x, y) =

(
δ + λ1 (x)

δ + λ1 (x)F (y)

)
g(x)f(y)

which can be solved for:

`(x, y) =
1 + λ1(x)

δ(
1 + F (y)λ1(x)

δ

)2 g(x)f(y)

which is expression (22) in the main text.
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